Dzenushko Dainis. Course project for theoretical mechanics "Double pendulum" — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Новая страница: «== Subject == Specification of double pendulum oscillations == Task == Rod is connected to the roof by cylindrical joint. The second rod is connected to the end of...»)
 
 
(не показано 8 промежуточных версий этого же участника)
Строка 1: Строка 1:
 +
[[Дзенушко Дайнис. Курсовой проект по теоретической механике|Русская версия ]][[Файл:RUS.jpg]]
 
== Subject ==
 
== Subject ==
 
Specification of double pendulum oscillations  
 
Specification of double pendulum oscillations  
Строка 5: Строка 6:
 
Rod is connected to the roof by cylindrical joint. The second rod is connected to the end of the first rod via cylindrical joint so that when both rods are vertical the angle between joint's axis equals to <math>\alpha</math>. Dissipative forces are not taken to account.<br>
 
Rod is connected to the roof by cylindrical joint. The second rod is connected to the end of the first rod via cylindrical joint so that when both rods are vertical the angle between joint's axis equals to <math>\alpha</math>. Dissipative forces are not taken to account.<br>
 
'''System parameters:''' <br>
 
'''System parameters:''' <br>
#Тензоры инерции первого и второго стержней равны <math>\underline{\underline{\Theta}}_1</math> и <math>\underline{\underline{\Theta}}_2</math> соответственно.  
+
#Inertia tensor of first and second rods are equal. <math>\underline{\underline{\Theta}}_1</math> and <math>\underline{\underline{\Theta}}_2</math> respectively.  
#Длины стержней равны a и b, их массы <math>m_1</math> и <math>m_2</math> соответственно первому и второму стержням.
+
#length of rods are a and b, their masses <math>m_1</math> and <math>m_2</math> for first and second rods.
#Угол между осями вращения шарниров равен <math>\alpha</math><br>
+
#Angle between rotation axis of joints equals to <math>\alpha</math><br>
*<math>\varphi</math> - угол между первым стержнем и вертикалью
+
*<math>\varphi</math> - angle between first rod and vertical direction
*<math>\psi</math> - угол между осью первого стержня и вторым стержнем т.е. угол во втором шарнире относительно вытянутого положения
+
*<math>\psi</math> - angle between axis of first and second rods that means the angle in second joint relative to vertical orientation of system.
  
 
<gallery widths=231px heights=319px perrow = 1>
 
<gallery widths=231px heights=319px perrow = 1>
 
Файл:2_oscillator.jpg‎
 
Файл:2_oscillator.jpg‎
 
</gallery>
 
</gallery>
'''Задача:'''<br>
+
'''Main task:'''<br>
*Найти уравнение движения системы
+
*find the equation of motion for this double pendulum
  
== Решение ==
+
== Solution ==
'''Определимся с подходом к решению:''' Задачу будем решать при помощи уравнения Лагранжа имеющего следующий вид:<br>
+
'''Let's find the way of solving this problem:''' We are going to solve the problem by using the Lagrange equation:<br>
 
<math>\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i}-\frac{\partial T}{\partial q_i} = -\frac{\partial \Pi}{\partial q_i}+Q_i</math><br>
 
<math>\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i}-\frac{\partial T}{\partial q_i} = -\frac{\partial \Pi}{\partial q_i}+Q_i</math><br>
*<math>T</math> - Кинетическая энергия системы <br>
+
*<math>T</math> - Kinetic energy of system <br>
*<math>\Pi</math> - Потенциальная энергия системы<br>
+
*<math>\Pi</math> - Potential energy of system<br>
*<math>q_i</math> - Обобщенные координаты<br>
+
*<math>q_i</math> - Generalized coordinates<br>
*<math>\dot{q}_i</math> - Обобщенные скорости<br>
+
*<math>\dot{q}_i</math> - generalized velocities<br>
*<math>Q_i</math> - Обобщенные непотенциальные силы<br>
+
*<math>Q_i</math> - generalized non-potential forces<br>
 
<br>
 
<br>
  
'''Выберем обобщенные координаты:''' в качестве обобщенных координат возьмем углы <math>\varphi</math> и <math>\psi</math> <br>
+
'''Selecting generalized coordinates:''' for generalized coordinates we are going to use angles <math>\varphi</math> and <math>\psi</math> <br>
*В нашем случае отсутствуют обощенные силы, соответствующие непотенциальным взаимодействиям.<br>
+
*In this problem we neglect non-potential interactions, so generalized non-potential forces equals to zero.<br>
  
'''Найдем потенциальную и кинетическую энергии системы:''' <math>\Pi_1 , T_1 ; \Pi_2 , T_2 </math> соответственно первого и второго стержней.<br> <math>\Pi = \Pi_1 + \Pi_2</math> - Потенциальная энергия системы<br>
+
'''Calculating potential and kinetic energy of system:''' <math>\Pi_1 , T_1 ; \Pi_2 , T_2 </math> of first and second rods relatively.<br> <math>\Pi = \Pi_1 + \Pi_2</math> - Potential energy of system<br>
<math>T = T_1 + T_2</math> - Кинетическая энергия системы<br>
+
<math>T = T_1 + T_2</math> - Kinetic energy of system<br>
<math>T_1 = \frac{\underline{\omega}_1 \cdot \underline{\underline{\Theta}}_1 \cdot \underline{\omega}_1}{2} = \frac{\Theta_1 \omega_1^2}{2} = \frac{\Theta_1 \dot{\varphi}^2}{2}</math> - Кинетическая энергия первого стержня; Где
+
<math>T_1 = \frac{\underline{\omega}_1 \cdot \underline{\underline{\Theta}}_1 \cdot \underline{\omega}_1}{2} = \frac{\Theta_1 \omega_1^2}{2} = \frac{\Theta_1 \dot{\varphi}^2}{2}</math> - Kinetic energy of first rod; Where
<math>\qquad \Theta_1 = \frac{m_1 a^2}{3}</math> - момент инерции первого стержня<br>
+
<math>\qquad \Theta_1 = \frac{m_1 a^2}{3}</math> - Inertia torque of first rod<br>
<math>\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)</math> - Потенциальная энергия первого стержня<br>
+
<math>\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)</math> - Potential energy of first rod<br>
<math>T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}</math> - Кинетическая энергия второго стержня<br>
+
<math>T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}</math> - Kinetic energy of second rod<br>
 
<math>\underline{\omega}_2 = ?</math><br><br>
 
<math>\underline{\omega}_2 = ?</math><br><br>
  
'''Найдем вектор угловой скорости второго стержня:''' <br>
+
'''Finding second rod's angular velocity vector:''' <br>
Для нахождения <math>\underline{\omega}_2</math> найдем тензоры поворота первого и второго стержней<br>
+
For calculating <math>\underline{\omega}_2</math> we will find rotation tensors of both rods<br>
 
<math>\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)</math><br>
 
<math>\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)</math><br>
 
<math>\underline{\underline{P}}_2(\psi,\underline{e}) = \underline{e}\underline{e} + (\underline{\underline{E}} - \underline{e}\underline{e})cos(\psi) + \underline{e} \times \underline{\underline{E}}sin(\psi)</math><br>
 
<math>\underline{\underline{P}}_2(\psi,\underline{e}) = \underline{e}\underline{e} + (\underline{\underline{E}} - \underline{e}\underline{e})cos(\psi) + \underline{e} \times \underline{\underline{E}}sin(\psi)</math><br>
Где:<br>
+
Where:<br>
<math>\underline{e} = \underline{\underline {P}}_1 \cdot \underline{e}_0</math> - ось вращения второго стержня в данном положении<br>
+
<math>\underline{e} = \underline{\underline {P}}_1 \cdot \underline{e}_0</math> - second rod's ongoing rotation axis<br>
<math>\underline{e}_0 = \cos(\alpha) \underline{k} + \sin(\alpha) \underline{i}</math> - ось вращения второго стержня в начальном положении <br><br>
+
<math>\underline{e}_0 = \cos(\alpha) \underline{k} + \sin(\alpha) \underline{i}</math> - second rod's initial rotation axis<br><br>
  
<math>\underline{\underline{P}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1</math> - полный тензор поворота второго стержня <br><br>
+
<math>\underline{\underline{P}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1</math> - full rotation tensor for second rod<br><br>
  
Но:<br>
+
But:<br>
 
<math> \underline{\underline{P}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}(\psi,\underline{e}) \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0})\cdot \underline{\underline{P}}^T_1 \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0})</math><br>
 
<math> \underline{\underline{P}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}(\psi,\underline{e}) \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0})\cdot \underline{\underline{P}}^T_1 \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0})</math><br>
  
Теперь применяя формулу сложения угловых скоростей получим:<br>
+
Now using the angular velocity addition formula we get:<br>
 
<math>\underline{\omega}_2 = \underline{\omega}_1 + \underline{\underline{P}}_1 \cdot \underline{\tilde{\omega}}_2; \qquad \underline{\tilde{\omega}}_2 = \dot{\psi}\underline{e_0}</math><br>
 
<math>\underline{\omega}_2 = \underline{\omega}_1 + \underline{\underline{P}}_1 \cdot \underline{\tilde{\omega}}_2; \qquad \underline{\tilde{\omega}}_2 = \dot{\psi}\underline{e_0}</math><br>
  
Таким образом получаем что:<br>
+
So we got the equation:<br>
 
<math>\underline{\omega}_2 =  \dot{\varphi} \underline{k} + \dot{\psi}\underline{e}</math><br><br>
 
<math>\underline{\omega}_2 =  \dot{\varphi} \underline{k} + \dot{\psi}\underline{e}</math><br><br>
  
'''Найдем скорость центра масс второго стержня'''<br>
+
'''Finding second rod's center of mass velocity'''<br>
 
<math>\underline{\vartheta}_c = \frac{1}{2}\underline{\omega}_2 \times \underline{b} + \dot{\varphi}\underline{k}\times \underline{a} ; \qquad \underline{a} = \underline{\underline{P}}_1 \cdot a\underline{j} ; \qquad \underline{b} = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0}) \cdot b\underline{j}</math>
 
<math>\underline{\vartheta}_c = \frac{1}{2}\underline{\omega}_2 \times \underline{b} + \dot{\varphi}\underline{k}\times \underline{a} ; \qquad \underline{a} = \underline{\underline{P}}_1 \cdot a\underline{j} ; \qquad \underline{b} = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0}) \cdot b\underline{j}</math>
 
<br><br>
 
<br><br>
  
'''Найдем кинетическую энергию второго стержня'''<br>
+
'''Finding second rod's kinetic energy'''<br>
Запишем тензор инерции второго стержня:<br>
+
Second rod's inertia tensor:<br>
 
<math>\underline{\underline{\Theta}}_2 = \frac{ml^2}{12}\left(\underline{\underline{E}} - \underline{\tilde{e}\tilde{e}} \right) ;\qquad \underline{\tilde{e}} = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0}) \cdot \underline{j}</math><br><br>
 
<math>\underline{\underline{\Theta}}_2 = \frac{ml^2}{12}\left(\underline{\underline{E}} - \underline{\tilde{e}\tilde{e}} \right) ;\qquad \underline{\tilde{e}} = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0}) \cdot \underline{j}</math><br><br>
Теперь мы нашли все необходимое для подставления в формулу для кинетической энергии второго стержня:<br>
+
Now we found all expressions required for second rod's kinetic energy formula:<br>
 
<math>T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}</math>
 
<math>T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}</math>
 
<br><br>
 
<br><br>
  
'''Найдем потенциальную энергию второго стержня'''<br>
+
'''Finding second rod's potential energy'''<br>
<math>\Pi_2 = mg(a+b - \underline{r}_c \cdot \underline{j}); \qquad \underline{r}_c = \underline{a} + \frac{1}{2}\underline{b}</math> - радиус-вектор центра масс второго стержня<br><br>
+
<math>\Pi_2 = mg(a+b - \underline{r}_c \cdot \underline{j}); \qquad \underline{r}_c = \underline{a} + \frac{1}{2}\underline{b}</math> - radius-vector of second rod's center of mass<br><br>
'''Получение уравнения движения'''<br>
+
'''Finding the motion equation'''<br>
Продифференцируем полученные выражения для потенциальной и кинетической энергий, как это требует уравнение Лагранжа и подставим полученное в него. В результате получим систему из двух дифференциальных уравнений которые описывают движение системы.<br>
+
We need to differentiate the equations for potential and kinetic energy, the way Lagrange equation requires and use the result in it. As the result we going to get the system of two differential equations which itself is equation of motion.<br>
Заметим что данный метод решения дает нам уравнение движения для больших углов, в случае необходимости его можно линеаризовать предположив что углы <math>\varphi,\psi</math> малы и отбросив слагаемые второго порядка.<br>
+
We notice that using this method we can get the motion equation also for big angles, it can be linearized assuming that angles <math>\varphi,\psi</math> are small and dropping terms of second order.<br>
  
== Применение метода решения для частного случая ==
+
== Using this method for special case ==
Проверим описанный выше метод в частном случае при <math>\alpha = 0</math><br>  
+
We'll check mentionad method for special case when <math>\alpha = 0</math><br>  
В таком случае задача сводится к двухмерной.<br>
+
In this case problem becomes 2D.<br>
'''Найдем тензоры поворота'''<br>
+
'''Finding rotation tensors'''<br>
 
<math>\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)</math><br><br>
 
<math>\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)</math><br><br>
 
<math>\underline{e}_0 = \cos(\alpha) \underline{k} + \sin(\alpha) \underline{i} = \underline{k}</math><br>
 
<math>\underline{e}_0 = \cos(\alpha) \underline{k} + \sin(\alpha) \underline{i} = \underline{k}</math><br>
Строка 83: Строка 84:
 
<math>\underline{\underline{P}}_2(\psi,\underline{e})= \underline{\underline{P}}_2(\psi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\psi) + \underline{k} \times \underline{\underline{E}}sin(\psi)</math><br><br>
 
<math>\underline{\underline{P}}_2(\psi,\underline{e})= \underline{\underline{P}}_2(\psi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\psi) + \underline{k} \times \underline{\underline{E}}sin(\psi)</math><br><br>
  
'''Найдем угловую скорость второго стержня'''<br>
+
'''Finding second rod's angular vielocity'''<br>
 
<math>\underline{\omega}_2 = (\dot{\varphi}+\dot{\psi})\underline{k}</math><br><br>
 
<math>\underline{\omega}_2 = (\dot{\varphi}+\dot{\psi})\underline{k}</math><br><br>
  
'''Найдем скорость центра масс'''<br>
+
'''Finding second rod's center of mass velocity'''<br>
 
<math>\upsilon^2_c = \frac{1}{4} b^2 (\dot{\varphi}+\dot{\psi})^2 + ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + a^2\dot{\varphi}^2</math><br><br>
 
<math>\upsilon^2_c = \frac{1}{4} b^2 (\dot{\varphi}+\dot{\psi})^2 + ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + a^2\dot{\varphi}^2</math><br><br>
  
'''Найдем кинетическую энергию второго стержня'''<br>
+
'''Finding second rod's kinetic energy'''<br>
 
<math>T_2 = \frac{1}{2} \left( \frac{m_2 b^2}{3}(\dot{\varphi}+\dot{\psi})^2 + m_2 ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + m_2 a^2\dot{\varphi}^2 \right)</math><br><br>
 
<math>T_2 = \frac{1}{2} \left( \frac{m_2 b^2}{3}(\dot{\varphi}+\dot{\psi})^2 + m_2 ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + m_2 a^2\dot{\varphi}^2 \right)</math><br><br>
  
'''Найдем потенциальную энергию второго стержня'''<br>
+
'''Finding second rod's potential energy'''<br>
 
<math>\Pi_2 = m_2 g \left[ a \left(1-\cos\varphi \right) + \frac{b}{2}\left(2 + \sin\varphi\sin\psi - \cos\varphi\cos\psi \right) \right]</math><br><br>
 
<math>\Pi_2 = m_2 g \left[ a \left(1-\cos\varphi \right) + \frac{b}{2}\left(2 + \sin\varphi\sin\psi - \cos\varphi\cos\psi \right) \right]</math><br><br>
  
'''Найдем кинетическую и потенциальную энергии первого стержня'''<br>
+
'''Finding first rod's kinetic and potential energy'''<br>
 
<math>T_1 = \frac{1}{2}\frac{m_1 a^2}{3}\dot{\varphi}^2</math><br>
 
<math>T_1 = \frac{1}{2}\frac{m_1 a^2}{3}\dot{\varphi}^2</math><br>
 
<math>\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)</math><br><br>
 
<math>\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)</math><br><br>
  
'''Получение уравнения движения для частного случая'''<br>
+
'''Finding equation of motion for this special case'''<br>
Запишем выражения для полной кинетической и потенциальной энергий:<br>
+
Let's write equations for system's kinetic and potential energy:<br>
 
<math>T = \frac{1}{2}\frac{m_1 a^2}{3}\dot{\varphi}^2 + \frac{1}{2} \left( \frac{m_2 b^2}{3}(\dot{\varphi}+\dot{\psi})^2 + m_2 ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + m_2 a^2\dot{\varphi}^2 \right)</math><br>
 
<math>T = \frac{1}{2}\frac{m_1 a^2}{3}\dot{\varphi}^2 + \frac{1}{2} \left( \frac{m_2 b^2}{3}(\dot{\varphi}+\dot{\psi})^2 + m_2 ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + m_2 a^2\dot{\varphi}^2 \right)</math><br>
 
<math>\Pi = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right) + m_2 g \left[ a \left(1-\cos\varphi \right) + \frac{b}{2}\left(2 + \sin\varphi\sin\psi - \cos\varphi\cos\psi \right) \right]</math><br>
 
<math>\Pi = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right) + m_2 g \left[ a \left(1-\cos\varphi \right) + \frac{b}{2}\left(2 + \sin\varphi\sin\psi - \cos\varphi\cos\psi \right) \right]</math><br>
Теперь продифференцируем энергии и произведем линеаризацию полученного результата предполагая что <math>\varphi , \psi</math> малые углы оставив только бесконечно малые первого порядка. В результате получим уравнение движения:<br>
+
Now we differentiate both equations and linearise results assuming that <math>\varphi , \psi</math> are small and taking to account only infinitesimals of the first order. As the result we find equation of motion:<br>
 
<math>
 
<math>
 
\begin{cases}
 
\begin{cases}
Строка 111: Строка 112:
 
</math>
 
</math>
  
== Обсуждение результатов и выводы ==
+
== Discussing the results and conclusion ==
В данной работе был подробно описан алгоритм решения задачи о двойном маятнике в случае когда оба шарнира циллиндрические. Затем данный метод был применен для частного случая плоской задачи.
+
The algorithm of solving the problem about double pendulum where both joints are cylindrical was described in this work. After that this method was used for special case of two-dimential problem.
  
== Ссылки по теме ==
+
== Related links ==
 
*[http://en.wikipedia.org/wiki/Double_pendulum  Double pendulum 2D Wiki]<br>
 
*[http://en.wikipedia.org/wiki/Double_pendulum  Double pendulum 2D Wiki]<br>
 
*[http://vuz.exponenta.ru/PDF/koleb2s2.html  Двумерный случай двойного маятника]
 
*[http://vuz.exponenta.ru/PDF/koleb2s2.html  Двумерный случай двойного маятника]
  
== См. также ==
+
== See also ==
  
 
* [[Справка:Содержание|Справочная информация]]
 
* [[Справка:Содержание|Справочная информация]]
 
* [[Курсовые проекты ТМ 20510 (2012)|Список курсовых проектов]]
 
* [[Курсовые проекты ТМ 20510 (2012)|Список курсовых проектов]]
* [[Кафедра "Теоретическая механика"]]
+
* [[Кафедра "Теоретическая механика"|Department for Theoretical Mechanics]]
* [[Дзенушко Дайнис]]
+
* [[Dzenushko Dainis]]
  
  
 
[[Category: Студенческие проекты]]
 
[[Category: Студенческие проекты]]

Текущая версия на 17:55, 17 сентября 2012

Русская версия RUS.jpg

Subject[править]

Specification of double pendulum oscillations

Task[править]

Rod is connected to the roof by cylindrical joint. The second rod is connected to the end of the first rod via cylindrical joint so that when both rods are vertical the angle between joint's axis equals to [math]\alpha[/math]. Dissipative forces are not taken to account.
System parameters:

  1. Inertia tensor of first and second rods are equal. [math]\underline{\underline{\Theta}}_1[/math] and [math]\underline{\underline{\Theta}}_2[/math] respectively.
  2. length of rods are a and b, their masses [math]m_1[/math] and [math]m_2[/math] for first and second rods.
  3. Angle between rotation axis of joints equals to [math]\alpha[/math]
  • [math]\varphi[/math] - angle between first rod and vertical direction
  • [math]\psi[/math] - angle between axis of first and second rods that means the angle in second joint relative to vertical orientation of system.


Main task:

  • find the equation of motion for this double pendulum

Solution[править]

Let's find the way of solving this problem: We are going to solve the problem by using the Lagrange equation:
[math]\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i}-\frac{\partial T}{\partial q_i} = -\frac{\partial \Pi}{\partial q_i}+Q_i[/math]

  • [math]T[/math] - Kinetic energy of system
  • [math]\Pi[/math] - Potential energy of system
  • [math]q_i[/math] - Generalized coordinates
  • [math]\dot{q}_i[/math] - generalized velocities
  • [math]Q_i[/math] - generalized non-potential forces


Selecting generalized coordinates: for generalized coordinates we are going to use angles [math]\varphi[/math] and [math]\psi[/math]

  • In this problem we neglect non-potential interactions, so generalized non-potential forces equals to zero.

Calculating potential and kinetic energy of system: [math]\Pi_1 , T_1 ; \Pi_2 , T_2 [/math] of first and second rods relatively.
[math]\Pi = \Pi_1 + \Pi_2[/math] - Potential energy of system
[math]T = T_1 + T_2[/math] - Kinetic energy of system
[math]T_1 = \frac{\underline{\omega}_1 \cdot \underline{\underline{\Theta}}_1 \cdot \underline{\omega}_1}{2} = \frac{\Theta_1 \omega_1^2}{2} = \frac{\Theta_1 \dot{\varphi}^2}{2}[/math] - Kinetic energy of first rod; Where [math]\qquad \Theta_1 = \frac{m_1 a^2}{3}[/math] - Inertia torque of first rod
[math]\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)[/math] - Potential energy of first rod
[math]T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}[/math] - Kinetic energy of second rod
[math]\underline{\omega}_2 = ?[/math]

Finding second rod's angular velocity vector:
For calculating [math]\underline{\omega}_2[/math] we will find rotation tensors of both rods
[math]\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)[/math]
[math]\underline{\underline{P}}_2(\psi,\underline{e}) = \underline{e}\underline{e} + (\underline{\underline{E}} - \underline{e}\underline{e})cos(\psi) + \underline{e} \times \underline{\underline{E}}sin(\psi)[/math]
Where:
[math]\underline{e} = \underline{\underline {P}}_1 \cdot \underline{e}_0[/math] - second rod's ongoing rotation axis
[math]\underline{e}_0 = \cos(\alpha) \underline{k} + \sin(\alpha) \underline{i}[/math] - second rod's initial rotation axis

[math]\underline{\underline{P}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1[/math] - full rotation tensor for second rod

But:
[math] \underline{\underline{P}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}(\psi,\underline{e}) \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0})\cdot \underline{\underline{P}}^T_1 \cdot \underline{\underline{P}}_1 = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0})[/math]

Now using the angular velocity addition formula we get:
[math]\underline{\omega}_2 = \underline{\omega}_1 + \underline{\underline{P}}_1 \cdot \underline{\tilde{\omega}}_2; \qquad \underline{\tilde{\omega}}_2 = \dot{\psi}\underline{e_0}[/math]

So we got the equation:
[math]\underline{\omega}_2 = \dot{\varphi} \underline{k} + \dot{\psi}\underline{e}[/math]

Finding second rod's center of mass velocity
[math]\underline{\vartheta}_c = \frac{1}{2}\underline{\omega}_2 \times \underline{b} + \dot{\varphi}\underline{k}\times \underline{a} ; \qquad \underline{a} = \underline{\underline{P}}_1 \cdot a\underline{j} ; \qquad \underline{b} = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0}) \cdot b\underline{j}[/math]

Finding second rod's kinetic energy
Second rod's inertia tensor:
[math]\underline{\underline{\Theta}}_2 = \frac{ml^2}{12}\left(\underline{\underline{E}} - \underline{\tilde{e}\tilde{e}} \right) ;\qquad \underline{\tilde{e}} = \underline{\underline{P}}_1 \cdot \underline{\underline{P}}(\psi,\underline{e_0}) \cdot \underline{j}[/math]

Now we found all expressions required for second rod's kinetic energy formula:
[math]T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}[/math]

Finding second rod's potential energy
[math]\Pi_2 = mg(a+b - \underline{r}_c \cdot \underline{j}); \qquad \underline{r}_c = \underline{a} + \frac{1}{2}\underline{b}[/math] - radius-vector of second rod's center of mass

Finding the motion equation
We need to differentiate the equations for potential and kinetic energy, the way Lagrange equation requires and use the result in it. As the result we going to get the system of two differential equations which itself is equation of motion.
We notice that using this method we can get the motion equation also for big angles, it can be linearized assuming that angles [math]\varphi,\psi[/math] are small and dropping terms of second order.

Using this method for special case[править]

We'll check mentionad method for special case when [math]\alpha = 0[/math]
In this case problem becomes 2D.
Finding rotation tensors
[math]\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)[/math]

[math]\underline{e}_0 = \cos(\alpha) \underline{k} + \sin(\alpha) \underline{i} = \underline{k}[/math]
[math]\underline{e} = \underline{\underline {P}}_1 \cdot \underline{e}_0 = \underline{k}[/math]
[math]\underline{\underline{P}}_2(\psi,\underline{e})= \underline{\underline{P}}_2(\psi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\psi) + \underline{k} \times \underline{\underline{E}}sin(\psi)[/math]

Finding second rod's angular vielocity
[math]\underline{\omega}_2 = (\dot{\varphi}+\dot{\psi})\underline{k}[/math]

Finding second rod's center of mass velocity
[math]\upsilon^2_c = \frac{1}{4} b^2 (\dot{\varphi}+\dot{\psi})^2 + ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + a^2\dot{\varphi}^2[/math]

Finding second rod's kinetic energy
[math]T_2 = \frac{1}{2} \left( \frac{m_2 b^2}{3}(\dot{\varphi}+\dot{\psi})^2 + m_2 ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + m_2 a^2\dot{\varphi}^2 \right)[/math]

Finding second rod's potential energy
[math]\Pi_2 = m_2 g \left[ a \left(1-\cos\varphi \right) + \frac{b}{2}\left(2 + \sin\varphi\sin\psi - \cos\varphi\cos\psi \right) \right][/math]

Finding first rod's kinetic and potential energy
[math]T_1 = \frac{1}{2}\frac{m_1 a^2}{3}\dot{\varphi}^2[/math]
[math]\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)[/math]

Finding equation of motion for this special case
Let's write equations for system's kinetic and potential energy:
[math]T = \frac{1}{2}\frac{m_1 a^2}{3}\dot{\varphi}^2 + \frac{1}{2} \left( \frac{m_2 b^2}{3}(\dot{\varphi}+\dot{\psi})^2 + m_2 ab\cos\psi(\dot{\varphi}+\dot{\psi})\dot{\varphi} + m_2 a^2\dot{\varphi}^2 \right)[/math]
[math]\Pi = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right) + m_2 g \left[ a \left(1-\cos\varphi \right) + \frac{b}{2}\left(2 + \sin\varphi\sin\psi - \cos\varphi\cos\psi \right) \right][/math]
Now we differentiate both equations and linearise results assuming that [math]\varphi , \psi[/math] are small and taking to account only infinitesimals of the first order. As the result we find equation of motion:
[math] \begin{cases} \ddot{\varphi} \left( \frac{m_1 a^2}{3} + \frac{m_2 b^2}{3} + m_2 a (a+b) \right) + \ddot{\psi} \left( \frac{m_2 b^2}{3} + \frac{m_2 ab}{2} \right) + \varphi \frac{g}{2} \left((m_1+2m_2)a+m_2 b \right)+\psi \frac{g}{2}m_2 b = 0\\ \ddot{\varphi} \left( \frac{m_2 b^2}{3} + \frac{m_2 ab}{2} \right) + \ddot{\psi} \frac{m_2 b^2}{3} + \varphi \frac{g}{2} m_2 b + \psi \frac{g}{2} m_2 b = 0\\ \end{cases} [/math]

Discussing the results and conclusion[править]

The algorithm of solving the problem about double pendulum where both joints are cylindrical was described in this work. After that this method was used for special case of two-dimential problem.

Related links[править]

See also[править]