Редактирование: Crystal: Graz 2012

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 3: Строка 3:
 
== Elastic properties of ideal crystals: from macro to micro ==
 
== Elastic properties of ideal crystals: from macro to micro ==
  
Recent advance in nanotechnologies has increased the interest to determination of mechanical properties of crystalline structures at nanolevel. Mechanical description of nanostructures is impossible without thorough knowledge about elastic characteristics of interatomic bonds. Molecular dynamics simulation of solids also requires parameterization of interatomic potentials to fit the known elastic properties. Although the existing potentials give acceptable description of the physical characteristics of solids, still there are certain problems in precise description of mechanical properties, and in particular the elastic properties of crystals when all components of the stiffness tensor of crystals are required [M. Arroyo et al., 2004; I.E. Berinskiy et al., 2009]. The quantum mechanical analysis can give additional information for the interatomic potentials, however, up to now this cannot solve all the problems for description of the anisotropic elastic properties of crystalline solids. An attractive way for obtaining the necessary information is to use connection between macroscopic elastic properties of ideal crystals and elastic properties of interatomic bonds, which can be acquired analytically on the basis of the long-wave approximation or elastic energy correlation. The attempts to obtain such analytical connections have been made for decades, starting with works by M. Born et al. [Born M.- Ann. Phys.1914, Bd. 44, S. 605], and in some cases they gave quite a good correspondence [Martin R. M. – Phys. Pev. B,1970, v.1, p.4005 ] [Keating P. N. Phys. Rev., 1966, v. 145, p. 637][Krivtsov 2010][Kuzkin 2011]
+
Recent advances of nanotechnologies have increased interest to determination of mechanical properties of crystalline structures at nanolevel. Mechanical description of nanostructures is impossible without thorough knowledge about elastic characteristics of interatomic bonds. Molecular dynamics simulation of solids also requires parameterization of interatomic potentials to fit the known elastic properties. Although the existing potentials give acceptable description of the physical characteristics of solids, there is still existing problems in precise description of mechanical properties, and in particular the elastic properties of crystals when all components of the stiffness tensor of crystals are needed [M. Arroyo et al., 2004; I.E. Berinskiy et al., 2009]. The quantum mechanical analysis can give additional information for the interatomic potentials, however up to now this cannot solve all the problems for description of the anisotropic elastic properties of crystalline solids. An attractive way for obtaining the necessary information is to use connection between macroscopic elastic properties of ideal crystals and elastic properties of interatomic bonds, which can be obtained analytically on the basis of the long-wave approximation or elastic energy correlation. The attempts to obtain such analytical connections have been made for decades, starting with works by M. Born et al. [Born M.- Ann. Phys.1914, Bd. 44, S. 605], and in some cases they gave quite a good correspondence [Martin R. M. – Phys. Pev. B,1970, v.1, p.4005 ] [Keating P. N. Phys. Rev., 1966, v. 145, p. 637][Krivtsov 2010][Kuzkin 2011]
In the lecture a review of the models, connecting parameters of macroscopic stiffness tensor of ideal crystals and parameters of interatomic bonds is presented. For description of elastic properties of the atomic bonds three models are considered and compared: central force interaction, multibody interaction, moment interaction. For these models formulae giving explicit connection between macro and micro parameters for a wide range of crystalline structures are given, based on the original works of the authors and literature analysis.  
+
In the lecture a review of the models, connecting parameters of macroscopic stiffness tensor of ideal crystals and parameters of interatomic bonds are presented. For description of elastic properties of the atomic bonds three models are considered and compared: central force interaction, multibody interaction, moment interaction. For these models formulae giving explicit connection between macro and micro parameters for a wide range of crystalline structures are given, based on the original works of the authors and literature analysis. In particular...
 +
 
 +
''Please add here your text...''
  
 
A set of HCP metals with different degree of geometric imperfection (Be, Hf, Cd, Co, Mg, Re, Ti, Zn, Zr) is considered. It is shown that using the moment model leads to more accurate or similar (for ''d''-elements) description of the elastic properties than taking into account the deviations in geometrical proportions of real metal's lattice [Krivtsov_2010]. The difference between calculated elastic modulae and experimental data does not exceed the divergence in experimental data from various sourses. Thus, moment interaction is proved to be more universal for HCP structure.
 
A set of HCP metals with different degree of geometric imperfection (Be, Hf, Cd, Co, Mg, Re, Ti, Zn, Zr) is considered. It is shown that using the moment model leads to more accurate or similar (for ''d''-elements) description of the elastic properties than taking into account the deviations in geometrical proportions of real metal's lattice [Krivtsov_2010]. The difference between calculated elastic modulae and experimental data does not exceed the divergence in experimental data from various sourses. Thus, moment interaction is proved to be more universal for HCP structure.
  
A number of crystals with covalent preferred bonds are considered. They include diamond type crystals of the carbon group: C, Si, Ge, Sn, and crystals of sphalerite type, such as ZnS (sphalerite), BN, SiC, GaAs, and more then twenty other items. It is shown that moment model of atomic interaction describes with approximately equal precision both diamond and sphalerite type of crystal structures, while the other existing models are mainly orientated to one type of the structure and provide bigger errors or not acceptable for another type.
+
Number of crystals with covalent preferred bonds are considered. They include diamond type crystals of the carbon group: C, Si, Ge, Sn, and crystals of sphalerite type, such as ZnS (sphalerite), BN, SiC, GaAs, and more then twenty other items. It is shown that moment model of atomic interaction describes with approximately equal precision both diamond and sphalerite type of crystal structures, while the other existing models are mainly orientated to one type of the structure and provide bigger errors or not acceptable for another type.
  
Summarizing the above it can be stated that the moment interaction gives the best description for the properties of interatomic bonds when the elastic properties of a wide range of crystalline structures should be described in a uniform manner.
+
Summarizing the above it can be stated that the moment interaction gives the best description for the properties of interatomic bonds when the elastic properties of a wide number of crystalline structures should be described in a uniform manner.
  
 
Ivanova E.A., Krivtsov A.M., Morozov N.F.  Macroscopic relations of elasticity for complex crystal latices using moment interaction at microscale // Applied mathematics and mechanics. 2007. Т. 71. N. 4. С. 595-615.  
 
Ivanova E.A., Krivtsov A.M., Morozov N.F.  Macroscopic relations of elasticity for complex crystal latices using moment interaction at microscale // Applied mathematics and mechanics. 2007. Т. 71. N. 4. С. 595-615.  
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)
Источник — «http://tm.spbstu.ru/Crystal:_Graz_2012»