Устинова Алеся: Определение временных характеристик разрушения — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Введение)
(Введение)
Строка 70: Строка 70:
  
  
 +
:<math> F = \delta_n (k \pi (R - \frac{\delta_n}{4}) + \frac{E \sqrt{2 R \delta_n}}{3 (1 - \nu^2)}) </math>
  
 
[[История_Разрушений|История разрушений]]
 
[[История_Разрушений|История разрушений]]

Версия 22:19, 17 июля 2011

Введение

Процесс разрушения представляет собой сложный многоступенчатый временной процесс, начинающийся задолго до появления видимых трещин и заканчивающийся прорастанием трещины и разделением тела на части.

Закономерности процесса разрушения изучаются на различных масштабных уровнях с помощью тончайших физических экспериментов. На каждом масштабном уровне (от атомно-молекулярного до макроразмеров порядка километров) предлагаются определённые физические модели процесса разрушения, учитывающие параметры структуры и условия перехода разрушения с одного масштабного уровня на другой.

Согласно энергетической модели разрушения, практически использованной Гриффитсом А.А. в 1920 г., условием развития трещины является подвод энергии к её вершине. При разрушении находящегося под напряжением элементарного кубика с ребром длиною R освобождается энергия его упругого деформирования

      ΔR

Uупр = ∫ Fупр dx = E R x dx = E R ΔR 2 / 2 = σ 2 R 3 / 2E

      0

где Fупр = σ R 2 = E x R 2 / R = E R x - сила упругого деформирования кубика, Е - модуль упругости материала, ΔR = σ R / E - абсолютное удлинение одной из сторон кубика при его одноосном растяжении. Приращение длины разрыва (трещины) на величину dR приведёт к высвобождению дополнительного количества энергии упругого деформирования, равного σ 2 R 2 dR / 2E. С другой стороны, образование разрыва приводит к увеличению площади поверхности и поверхностной энергии тела на величину γ R dR (γ - удельная работа разрушения на единицу площади новой поверхности). Рассмотрев условия энергетического баланса и приравняв оба этих значения, получим формулу Гриффитса для разрушающих напряжений тела с трещиной и критического размера Rкр трещины, после достижения которого начинается самопроизвольный её рост в поле создаваемых ею перенапряжений

σ ~ √ 2 γ E / R

Rкр ~ 2 γ E / σ 2

Несколько иная (силовая) модель разрушения была предложена Ирвином, в которой критерием роста трещины был принят момент достижения критического значения коэффициентом интенсивности напряжений К, являющимся функцией только характера внешнего нагружения, геометрии тела и размеров трещины. Согласно предложению Ирвина, трещина не развивается, когда значения К не превышают некоторой критической. Интенсивность напряжений - это некоторая фиктивная величина, связанная с главными напряжениями и используемая для оценки сложного напряжённого состояния.

Нормальная сила:

[math] F_n = \frac{4}{3} \times E^* \times \sqrt{R^*} \times \delta_n^{\frac{3}{2}} [/math]
[math] \frac{1}{E^*} = \frac{(1-\nu_i^2)}{E_i} + \frac{(1-\nu_j^2)}{E_j} [/math]
[math] \frac{1}{R^*} = \frac{1}{R_i} + \frac{1}{R_j} [/math]
[math] F_n(\delta_n) = \frac{2}{3} \times \frac{E}{(1-\nu^2)} \times \sqrt{\frac{R}{2}} \times \delta_n^{\frac{3}{2}} [/math]

Сила адгезии:

[math] F_c = k \times A [/math]
[math] A = \pi \times h^2 [/math]

A - площадь круга

[math] h = \sqrt{R^2 - (R-\frac{\delta_n}{2})^2} [/math]

h - 1/2 хорды

[math] F_c(\delta_n) = k \times \pi \times (R^2 - (R - \frac{\delta_n}{2})^2) [/math]


[math] F = F_n(\delta_n) + F_c(\delta_n) [/math]


[math] F = \delta_n (k \pi (R - \frac{\delta_n}{4}) + \frac{E \sqrt{2 R \delta_n}}{3 (1 - \nu^2)}) [/math]

История разрушений

Постановка задачи

Используемые методы

План работы

Ссылки

Механизмы разрушения

Испытания металлов

См. также