Редактирование: Создание модели насыщения связи в простейших углеводородах

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 112: Строка 112:
 
* безразмерные <math>K_{eN}</math>, <math>K_{NN}</math>, <math>q</math>, <math>\eta</math>, <math>\varepsilon</math>
 
* безразмерные <math>K_{eN}</math>, <math>K_{NN}</math>, <math>q</math>, <math>\eta</math>, <math>\varepsilon</math>
  
силы действующие в системе. Обозначим за <math> F_{ee}</math> силу взаимодействия двух электронных облаков. Геометрический смысл переменных <math>r</math> и <math>x</math> приведен на рис. [pic:carbon]  
+
силы действующие в системе. Обозначим за <math> F_{ee}</math> силу взаимодействия двух электронных облаков. Геометрический смысл переменных <math>r</math> и <math>x</math> приведен на рис. [pic:carbon] <math>\label{eq:el_el_force}
 
 
<math>\label{eq:el_el_force}
 
 
     F_{ee} = \frac{P}{ \left(1 + \left( \frac{a}{2x} \right) ^  {\frac{1+q}{2}} \right)^2} \left( \frac{a}{2x} \right)^q,</math> <math>\label{eq:el_nuc_force}
 
     F_{ee} = \frac{P}{ \left(1 + \left( \frac{a}{2x} \right) ^  {\frac{1+q}{2}} \right)^2} \left( \frac{a}{2x} \right)^q,</math> <math>\label{eq:el_nuc_force}
 
     F_{eN}=C\left(r-x\right).</math> Так как система находится в равновесии <math>F_{ee} = F_{eN}</math>. Приравнивая выражения ([eq:el<sub>e</sub>l<sub>f</sub>orce]) и ([eq:el<sub>n</sub>uc<sub>f</sub>orce]) получаем:  
 
     F_{eN}=C\left(r-x\right).</math> Так как система находится в равновесии <math>F_{ee} = F_{eN}</math>. Приравнивая выражения ([eq:el<sub>e</sub>l<sub>f</sub>orce]) и ([eq:el<sub>n</sub>uc<sub>f</sub>orce]) получаем:  
 
 
<math>r = x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2}.</math> Выражение для суммарной силы действующей на ядро примет следующий вид: <math>f(x)=  \frac{P}{ \left(1 + \left( \frac{a}{2x} \right) ^  {\frac{1+q}{2}} \right)^2} \left( \frac{a}{2x} \right)^q +  
 
<math>r = x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2}.</math> Выражение для суммарной силы действующей на ядро примет следующий вид: <math>f(x)=  \frac{P}{ \left(1 + \left( \frac{a}{2x} \right) ^  {\frac{1+q}{2}} \right)^2} \left( \frac{a}{2x} \right)^q +  
 
     k_e \frac{4Q^2}{\left(  x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2} \right)^2},</math> где <math>Q</math> - заряд ядра. Таким образом зависимость силы, действующей на атомы, в зависимости от расстояния между ними задется неявно следующим образом:  
 
     k_e \frac{4Q^2}{\left(  x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2} \right)^2},</math> где <math>Q</math> - заряд ядра. Таким образом зависимость силы, действующей на атомы, в зависимости от расстояния между ними задется неявно следующим образом:  
 
 
<math>\begin{cases}
 
<math>\begin{cases}
 
         f(x)=  -\frac{P}{ \left(1 + \left( \frac{a}{2x} \right) ^  {\frac{1+q}{2}} \right)^2} \left( \frac{a}{2x} \right)^q +                                 
 
         f(x)=  -\frac{P}{ \left(1 + \left( \frac{a}{2x} \right) ^  {\frac{1+q}{2}} \right)^2} \left( \frac{a}{2x} \right)^q +                                 
 
         k_e \frac{4Q^2}{\left(  x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2} \right)^2}, \\
 
         k_e \frac{4Q^2}{\left(  x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2} \right)^2}, \\
 
         r(x) = x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2}.                           
 
         r(x) = x + \frac{P}{C} \frac{ \left( \frac{a}{2x}\right)^q}{\left(1+\left(\frac{a}{2x}\right) ^ {\frac{1+q}{2}}\right)^2}.                           
     \end{cases}</math>  
+
     \end{cases}</math> Обозначим <math>\xi = \frac{2x}{a}</math>. Используя соотношения ([eq:dimen<sub>p</sub>aram]) и ([eq:scale<sub>p</sub>aram]) перепишем полученные выражения в безразмерных величинах:  
 
 
Обозначим <math>\xi = \frac{2x}{a}</math>. Используя соотношения ([eq:dimen<sub>p</sub>aram]) и ([eq:scale<sub>p</sub>aram]) перепишем полученные выражения в безразмерных величинах:  
 
 
<math>\label{dimensionless_force}
 
<math>\label{dimensionless_force}
 
     \begin{cases}
 
     \begin{cases}
Строка 134: Строка 128:
 
         \frac{r(\xi)}{r_0} =\eta \left(  \frac{1}{2}\xi + \frac{1}{K_{eN}} \frac{ \xi^{-q}}{\left(1+\xi ^ {-\frac{1+q}{2}}\right)^2}  \right).
 
         \frac{r(\xi)}{r_0} =\eta \left(  \frac{1}{2}\xi + \frac{1}{K_{eN}} \frac{ \xi^{-q}}{\left(1+\xi ^ {-\frac{1+q}{2}}\right)^2}  \right).
 
     \end{cases}</math> Обозначим функции, стоящие в правых частях уравнений из системы ([dimensionless<sub>f</sub>orce]), за <math>\zeta(\varepsilon, \xi, q, K_{eN}, K_{NN} )</math>, <math>\Psi(\eta, \xi, q, K_{eN}, K_{NN} )</math>.  
 
     \end{cases}</math> Обозначим функции, стоящие в правых частях уравнений из системы ([dimensionless<sub>f</sub>orce]), за <math>\zeta(\varepsilon, \xi, q, K_{eN}, K_{NN} )</math>, <math>\Psi(\eta, \xi, q, K_{eN}, K_{NN} )</math>.  
 
 
Тогда система примет вид:  
 
Тогда система примет вид:  
 
 
<math>\begin{cases}
 
<math>\begin{cases}
 
         \frac{f(\xi)}{f^*} =\zeta(\varepsilon, q, K_{eN}, K_{NN}; \xi ), \\
 
         \frac{f(\xi)}{f^*} =\zeta(\varepsilon, q, K_{eN}, K_{NN}; \xi ), \\
Строка 144: Строка 136:
 
     r_* = (1 + \varepsilon_*)r_0, ~~~
 
     r_* = (1 + \varepsilon_*)r_0, ~~~
 
     \frac{\xi^*}{\xi_0}= \frac{r^*}{r_0},\end{aligned}</math> <math>\varepsilon^* = \frac{\xi^*}{\xi_0} - 1,</math> где <math>\xi_0 = \frac{2x_0}{a}</math>, <math>\xi^* = \frac{2x^*}{a}</math>,
 
     \frac{\xi^*}{\xi_0}= \frac{r^*}{r_0},\end{aligned}</math> <math>\varepsilon^* = \frac{\xi^*}{\xi_0} - 1,</math> где <math>\xi_0 = \frac{2x_0}{a}</math>, <math>\xi^* = \frac{2x^*}{a}</math>,
 
 
где <math>x_0</math>, <math>x^*</math> ”— расстояние равновесия и отрыва соответственно для координаты точки, представлящей центр масс электронного облака. записать набор уравнений, описывающий различные физические состояния системы:
 
где <math>x_0</math>, <math>x^*</math> ”— расстояние равновесия и отрыва соответственно для координаты точки, представлящей центр масс электронного облака. записать набор уравнений, описывающий различные физические состояния системы:
  
Строка 179: Строка 170:
  
 
Приведем экспериментальные данные для углерод-углеродного взаимодействия, взятые из работы :  
 
Приведем экспериментальные данные для углерод-углеродного взаимодействия, взятые из работы :  
 
 
<math>\label{experiment}
 
<math>\label{experiment}
 
     \begin{aligned}
 
     \begin{aligned}
Строка 188: Строка 178:
 
         &f^* = \frac{C(r^*-r_0)}{k_*}=\frac{800 \cdot (0,1859 - 0,01430)}{3,1000}=11,0710 \: \text{нН},
 
         &f^* = \frac{C(r^*-r_0)}{k_*}=\frac{800 \cdot (0,1859 - 0,01430)}{3,1000}=11,0710 \: \text{нН},
 
     \end{aligned}</math> где <math>D</math> — энергия связи, <math>r_0</math> — Равновесное расстояние, <math>r^*</math> — критическая длина связи, <math>f^*</math> — прочность связи, <math>C</math> —жесткость связи, <math>k^*</math> — коэффициент нелинейности. Таким образом такое взаимодействие полностью описывается тремя безразмерными константами, которые можно найти из экспериментальных данных:  
 
     \end{aligned}</math> где <math>D</math> — энергия связи, <math>r_0</math> — Равновесное расстояние, <math>r^*</math> — критическая длина связи, <math>f^*</math> — прочность связи, <math>C</math> —жесткость связи, <math>k^*</math> — коэффициент нелинейности. Таким образом такое взаимодействие полностью описывается тремя безразмерными константами, которые можно найти из экспериментальных данных:  
 
 
<math>\label{eq:experiment_constant}
 
<math>\label{eq:experiment_constant}
 
     \begin{aligned}
 
     \begin{aligned}
Строка 203: Строка 192:
  
 
Для потенциала Леннарда-Джонса имеем следующие соотношения:  
 
Для потенциала Леннарда-Джонса имеем следующие соотношения:  
 
 
<math>\begin{aligned}
 
<math>\begin{aligned}
 
         &f^* = 2.7 \frac{D}{r_0}, ~~~
 
         &f^* = 2.7 \frac{D}{r_0}, ~~~
 
         &C = 72 \frac{D}{r_0}.
 
         &C = 72 \frac{D}{r_0}.
     \end{aligned}</math>  
+
     \end{aligned}</math> Найдем константы <math>\alpha</math>, <math>\beta</math> и <math>\gamma</math> для потенциала Леннарда-Джноса и сравним их с углеродным взаимодействием: <math>\begin{aligned}
 
 
Найдем константы <math>\alpha</math>, <math>\beta</math> и <math>\gamma</math> для потенциала Леннарда-Джноса и сравним их с углеродным взаимодействием: <math>\begin{aligned}
 
 
         &\alpha_{LJ} = 1.1, \\
 
         &\alpha_{LJ} = 1.1, \\
 
         &\beta_{LJ} = \frac{Cr_0}{f^*}  = \frac{72 \frac{D}{r_0^2}r_0}{2.7\frac{D}{r_0}} = 26.67, \\
 
         &\beta_{LJ} = \frac{Cr_0}{f^*}  = \frac{72 \frac{D}{r_0^2}r_0}{2.7\frac{D}{r_0}} = 26.67, \\
 
         &\gamma_{LJ} = \frac{D}{r_0 f^*} = 2.7. \\
 
         &\gamma_{LJ} = \frac{D}{r_0 f^*} = 2.7. \\
 
     \end{aligned}</math>
 
     \end{aligned}</math>
   
+
  Видно, что безразмерный коэффициент <math>\beta</math>, подсчитанный для потенциала Леннарда-Джонса, отличается от подобного для углеродного взаимодействия на 158 %. Коэффициент <math>\gamma</math> отличается на 850 %. Это говорит о том, что потенциал Леннарда-Джонса не может точно описывать жесткостных и энергетических характеристик углерод-углеродного взаимодействия.
Видно, что безразмерный коэффициент <math>\beta</math>, подсчитанный для потенциала Леннарда-Джонса, отличается от подобного для углеродного взаимодействия на 158 %. Коэффициент <math>\gamma</math> отличается на 850 %. Это говорит о том, что потенциал Леннарда-Джонса не может точно описывать жесткостных и энергетических характеристик углерод-углеродного взаимодействия.
 
  
 
=== Потенциал Морзе ===
 
=== Потенциал Морзе ===
  
 
Для потенциала Морзе  имеем:  
 
Для потенциала Морзе  имеем:  
 
 
<math>\begin{aligned}
 
<math>\begin{aligned}
 
         &\alpha_{morse} = \frac{1}{\alpha a}\ln 2 +1 = \frac{\ln 2}{k_\nu} +1, \\
 
         &\alpha_{morse} = \frac{1}{\alpha a}\ln 2 +1 = \frac{\ln 2}{k_\nu} +1, \\
Строка 226: Строка 210:
 
         &\gamma_{morse} = \frac{D}{\frac{\alpha D k_\nu}{2 \alpha}}  = 2.\\
 
         &\gamma_{morse} = \frac{D}{\frac{\alpha D k_\nu}{2 \alpha}}  = 2.\\
 
     \end{aligned}</math>  
 
     \end{aligned}</math>  
 
 
Коэффициент <math>\alpha_M</math> можно сделать равным <math>\alpha_C</math> выбором константы <math>k_\nu</math>. <math>\beta</math> отличается на 61 %. <math>\gamma</math> отличается на 300 %. С помощью потенциала Морзе углерод-углеродное взаимодействие можно описать более точно чем с помощью потенциала Леннарда-Джонса, параметр <math>\alpha</math> можно подобрать точно, отличие <math>\beta</math> и <math>\gamma</math> меньше, однако все еще слишком велико, чтобы можно было говорить о точном описании угредоного взаимодействия с помощью этого потенциала.
 
Коэффициент <math>\alpha_M</math> можно сделать равным <math>\alpha_C</math> выбором константы <math>k_\nu</math>. <math>\beta</math> отличается на 61 %. <math>\gamma</math> отличается на 300 %. С помощью потенциала Морзе углерод-углеродное взаимодействие можно описать более точно чем с помощью потенциала Леннарда-Джонса, параметр <math>\alpha</math> можно подобрать точно, отличие <math>\beta</math> и <math>\gamma</math> меньше, однако все еще слишком велико, чтобы можно было говорить о точном описании угредоного взаимодействия с помощью этого потенциала.
  
Строка 232: Строка 215:
  
 
Потенциал Ми является обобщением потенциала Леннарда-Джонса. Рассмотрим можно ли удовлетворить константам <math>\alpha</math>, <math>\beta</math> и <math>\gamma</math> с помощью параметров потенциала:  
 
Потенциал Ми является обобщением потенциала Леннарда-Джонса. Рассмотрим можно ли удовлетворить константам <math>\alpha</math>, <math>\beta</math> и <math>\gamma</math> с помощью параметров потенциала:  
 
 
<math>\begin{aligned}
 
<math>\begin{aligned}
 
         &\alpha_{Mi} = \sqrt[n-m] {\frac{n+1}{m+1} }, \\
 
         &\alpha_{Mi} = \sqrt[n-m] {\frac{n+1}{m+1} }, \\
Строка 238: Строка 220:
 
         &\gamma_{Mi} = \frac{1}{mn} \sqrt[m-n]{ \frac{(m+1)^{(m+1)}}{(n+1)^{(n+1)}}}.
 
         &\gamma_{Mi} = \frac{1}{mn} \sqrt[m-n]{ \frac{(m+1)^{(m+1)}}{(n+1)^{(n+1)}}}.
 
     \end{aligned}</math>  
 
     \end{aligned}</math>  
 
 
Имеем систему из трех уравнений и двух неизвестных <math>m</math> и <math>n</math>. Решая систему, можно будет точно удовлетворить только двум уравнениям.
 
Имеем систему из трех уравнений и двух неизвестных <math>m</math> и <math>n</math>. Решая систему, можно будет точно удовлетворить только двум уравнениям.
  
Строка 244: Строка 225:
  
 
Используя экспериментальные данные ([experiment]) и соотношения ([eq:equilibrium]), ([eq:stiffness]), ([eq:max<sub>f</sub>orce]), ([eq:critical<sub>l</sub>en]) и ([eq:energy]) можем записать систему. систему уравнений, содержащую 6 безразмерных неизвестных <math>K_{eN}</math>, <math>K_{NN}</math>, <math>\xi_0</math>, <math>\xi^*</math>, <math>\eta</math>,<math>\epsilon</math> связывающую параметры модели:  
 
Используя экспериментальные данные ([experiment]) и соотношения ([eq:equilibrium]), ([eq:stiffness]), ([eq:max<sub>f</sub>orce]), ([eq:critical<sub>l</sub>en]) и ([eq:energy]) можем записать систему. систему уравнений, содержащую 6 безразмерных неизвестных <math>K_{eN}</math>, <math>K_{NN}</math>, <math>\xi_0</math>, <math>\xi^*</math>, <math>\eta</math>,<math>\epsilon</math> связывающую параметры модели:  
 
 
<math>\label{eq:dimenless_system}
 
<math>\label{eq:dimenless_system}
 
     \begin{cases}  
 
     \begin{cases}  
Строка 254: Строка 234:
 
         \zeta'_\xi(\varepsilon, q, K_{eN}, K_{NN}; \xi^*) = 0. \\
 
         \zeta'_\xi(\varepsilon, q, K_{eN}, K_{NN}; \xi^*) = 0. \\
 
     \end{cases}</math>  
 
     \end{cases}</math>  
 
 
Из соотношения ([dimensionless<sub>f</sub>orce]) видно, что функции <math>\Psi</math> и <math>\zeta</math> зависят от <math>\eta</math> и <math>\varepsilon</math> линейно, можем обозначить:  
 
Из соотношения ([dimensionless<sub>f</sub>orce]) видно, что функции <math>\Psi</math> и <math>\zeta</math> зависят от <math>\eta</math> и <math>\varepsilon</math> линейно, можем обозначить:  
 
<math>\begin{aligned} \label{eq:zeta_psi}
 
<math>\begin{aligned} \label{eq:zeta_psi}
Строка 260: Строка 239:
 
         &\zeta(\varepsilon, q, K_{eN}, K_{NN}; \xi_0 ) =\varepsilon \widetilde{\zeta} (q, K_{eN}, K_{NN}; \xi )
 
         &\zeta(\varepsilon, q, K_{eN}, K_{NN}; \xi_0 ) =\varepsilon \widetilde{\zeta} (q, K_{eN}, K_{NN}; \xi )
 
     \end{aligned}</math>  
 
     \end{aligned}</math>  
 
 
Тогда возможно исключить из системы ([eq:dimenless<sub>s</sub>ystem]) переменные <math>\eta</math> и <math>\varepsilon</math>. Тогда система имеет 4 неизвестных переменных и перепишется в следующем виде:  
 
Тогда возможно исключить из системы ([eq:dimenless<sub>s</sub>ystem]) переменные <math>\eta</math> и <math>\varepsilon</math>. Тогда система имеет 4 неизвестных переменных и перепишется в следующем виде:  
 
 
<math>\begin{cases}
 
<math>\begin{cases}
 
         \frac{ \widetilde{\Psi}( q, K_{eN} ;\xi^*) }{ \widetilde{\Psi}( q, K_{eN} ;\xi_0)} =  \frac{r^*}{r_0}, \\
 
         \frac{ \widetilde{\Psi}( q, K_{eN} ;\xi^*) }{ \widetilde{\Psi}( q, K_{eN} ;\xi_0)} =  \frac{r^*}{r_0}, \\
Строка 273: Строка 250:
 
         \widetilde{\zeta}'_\xi(q, K_{eN}, K_{NN}; \xi^*) = 0, \\
 
         \widetilde{\zeta}'_\xi(q, K_{eN}, K_{NN}; \xi^*) = 0, \\
 
         \widetilde{\zeta}(q, K_{eN}, K_{NN}; \xi_0 ) = 0. \\
 
         \widetilde{\zeta}(q, K_{eN}, K_{NN}; \xi_0 ) = 0. \\
     \end{cases}</math>
+
     \end{cases}</math> Решение системы выполняется комбинированным методом Монте-Карло  и методом Левенберга — Марквардта . На рис. [pic:monte<sub>c</sub>arlo] приведена визуализация выбора начального приближения. Начальное приближение выбирается случайным образом, далее выполняется итерационный метод. При этом необходимо выполнение условия <math>\xi^* > \xi_0</math>.
 
 
Решение системы выполняется комбинированным методом Монте-Карло  и методом Левенберга — Марквардта . На рис. [pic:monte<sub>c</sub>arlo] приведена визуализация выбора начального приближения. Начальное приближение выбирается случайным образом, далее выполняется итерационный метод. При этом необходимо выполнение условия <math>\xi^* > \xi_0</math>.
 
  
Так как система нелинейна, она может иметь вообще говоря бесконечное количество решений, однако в результате расчета в выбранных пределах задания начального приближения имеем единственное решение:  
+
Так как система нелинейна, она может иметь вообще говоря бесконечное количество решений, однако в результате расчета в выбранных пределах задания начального приближения имеем единственное решение: <math>\begin{cases}
 
 
<math>\begin{cases}
 
 
         \xi_0 = 0.4689,\\
 
         \xi_0 = 0.4689,\\
 
         \xi^* = 0.7105,\\
 
         \xi^* = 0.7105,\\
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)