Редактирование: Сиситема груза и блоков

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
'''''Задача:''''' С помощью языка программирования JavaScript смоделировать систему блоков с грузом.
 
'''''Задача:''''' С помощью языка программирования JavaScript смоделировать систему блоков с грузом.
 
 
 
  
 
== Решение ==
 
== Решение ==
Строка 86: Строка 83:
 
<math> \dot{v}ac=M_1gc+\frac{M_2gf_k}{L}(-\frac{c^2}{2r}+\frac{bc}{f_K})-M_3g\frac{f_kc}{r} </math>
 
<math> \dot{v}ac=M_1gc+\frac{M_2gf_k}{L}(-\frac{c^2}{2r}+\frac{bc}{f_K})-M_3g\frac{f_kc}{r} </math>
  
Сокращаем на <math>с</math>, расписываем выражения <math>а</math>, <math>b</math> и <math>с</math>, группируем члены. В результате получаем:
+
Сокращаем на с, расписываем выражения а, b и с, группируем члены. В результате получаем:
  
 
<math> \dot{v}(M_1+M_2+2M_3)=g\left [ M_1+ \frac{M_2}{2L}(2l+2r)-\frac{M_2f_K}{r}(\frac{1}{2}-\frac{1}{2L}-\frac{\pi r}{4L})-M_3\frac{f_k}{r}+M_2\frac{f_k}{r}(\frac{1}{2L}+\frac{r}{Lf_K})y \right ]. </math>
 
<math> \dot{v}(M_1+M_2+2M_3)=g\left [ M_1+ \frac{M_2}{2L}(2l+2r)-\frac{M_2f_K}{r}(\frac{1}{2}-\frac{1}{2L}-\frac{\pi r}{4L})-M_3\frac{f_k}{r}+M_2\frac{f_k}{r}(\frac{1}{2L}+\frac{r}{Lf_K})y \right ]. </math>
Строка 101: Строка 98:
  
 
<math> v =  \left \{ \frac{2gh}{M_1+M_2+2M_3} \left \{ M_1+\frac{M_2}{2L}{2l+2r+h}- \frac{f_K}{r} \left [ M_3+ M_2(\frac{1}{2}-\frac{1}{2L}-\frac{\pi r}{4L} - \frac{h}{4L} \right ] \right \} \right \} ^{\frac{1}{2}}  </math>
 
<math> v =  \left \{ \frac{2gh}{M_1+M_2+2M_3} \left \{ M_1+\frac{M_2}{2L}{2l+2r+h}- \frac{f_K}{r} \left [ M_3+ M_2(\frac{1}{2}-\frac{1}{2L}-\frac{\pi r}{4L} - \frac{h}{4L} \right ] \right \} \right \} ^{\frac{1}{2}}  </math>
 
== Визуализация программы ==
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Sizova/dl_kp.html | справа |width=700|height=600 |border=0 }}
 
 
<div class="mw-collapsible mw-collapsed">
 
'''Текст программы на языке JavaScript:''' <div class="mw-collapsible-content">
 
Файл '''"dl_kp.js"'''
 
<syntaxhighlight lang="javascript" line start="1" enclose="div">
 
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)