Редактирование: Особенности нестационарных тепловых процессов в одномерных гармонических кристаллах

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 12: Строка 12:
 
В настоящее время изучение нелинейных термомеханических процессов в низкоразмерных структурах привлекает особое внимание в связи с бурным развитием наноэлектронных устройств разработанных на основе материалов с микроструктурой . Достижения в области нанотехнологий позволили экспериментально подтвердить волновую природу теплопередачи и конечную скорость распространения тепловых возмущений . Результаты исследований подобных явлений могут послужить основой для создания универсальной теории теплопроводности, применимой как на микро-, так и на макромасштабах.
 
В настоящее время изучение нелинейных термомеханических процессов в низкоразмерных структурах привлекает особое внимание в связи с бурным развитием наноэлектронных устройств разработанных на основе материалов с микроструктурой . Достижения в области нанотехнологий позволили экспериментально подтвердить волновую природу теплопередачи и конечную скорость распространения тепловых возмущений . Результаты исследований подобных явлений могут послужить основой для создания универсальной теории теплопроводности, применимой как на микро-, так и на макромасштабах.
  
В данной работе мы выбрали для рассмотрения тепловых процессов одну из простейших систем: однородную одномерную среду, в которой отсутствуют механические движения. В этом случае уравнение баланса энергии может быть записано в виде Вывод уравнения будет дан ниже: –. В упрощенной формулировке не учтен объемный подвод тепла.<math>U = -h’</math>, где <math>\rho</math> — плотность среды, <math>U</math> — внутренняя (в данном случае чисто тепловая) энергия, <math>h</math> — тепловой поток, точкой обозначена производная по времени, штрихом — по координате. Так как в рассматриваемом случае изменение тепловой энергии связано только с изменением температуры, то <math>U = c_V T </math>,где <math>T</math> — температура, <math>c_V</math> — теплоемкость при постоянном объеме. Если изменения температуры невелики, то теплоемкость можно считать постоянной величиной. Связь теплового потока с температурой обычно описывается законом Фурье : <math>h = -T’ T = T”</math> — в результате мы получили классическое уравнение теплопроводности, где <math>\kappa</math> — коэффициент теплопроводности, <math>{\beta = \kappa/(\rho c_V)}</math> — коэффициент температуропроводности, точка <math>\dot{(~~)}</math> обозначает дифференцирование по времени <math>t</math>, штрих <math>(~~)'</math> дифференцирование по координате <math>x</math>. Уравнение получено подстановкой закона Фурье вместе с соотношением в уравнение баланса энергии . На практике закон Фурье применяется для описания тепловых процессов на макромасштабе. Однако закон Фурье предсказывает бесконечную скорость распространения сигнала, что может быть парадоксально с физической точки зрения. Изучение процессов на микроуровне, когда характерные длины пропорциональны нескольким длинам межатомных связей,выявило необходимость использования более сложных моделей теплопроводности, учитывающих конечную скорость распространения тепловых возмущений. Значительные отклонения от закона Фурье наблюдаются в одномерных кристаллических структурах . Недавние экспериментальные исследования одномерных наноструктур показали зависимость теплопроводности от длины структуры. Сильные отклонения от закона Фурье были экспериментально показаны для <math>\mathrm{C}</math> и  <math>\mathrm{BN}</math> нанотрубок. Тепловые аномалии, наблюдаемые в наноструктурах, могут быть использованы на практике для разработки перспективных устройств, таких как тепловой диод .
+
В данной работе мы выбрали для рассмотрения тепловых процессов одну из простейших систем: однородную одномерную среду, в которой отсутствуют механические движения. В этом случае уравнение баланса энергии может быть записано в виде Вывод уравнения будет дан ниже: –. В упрощенной формулировке не учтен объемный подвод тепла.
 +
<math>U = -h’</math>, где <math>\rho</math> — плотность среды, <math>U</math> — внутренняя (в данном случае чисто тепловая) энергия, <math>h</math> — тепловой поток, точкой обозначена производная по времени, штрихом — по координате. Так как в рассматриваемом случае изменение тепловой энергии связано только с изменением температуры, то <math>U = c_V T </math>,где <math>T</math> — температура, <math>c_V</math> — теплоемкость при постоянном объеме. Если изменения температуры невелики, то теплоемкость можно считать постоянной величиной. Связь теплового потока с температурой обычно описывается законом Фурье : <math>h = -T’ T = T”</math> — в результате мы получили классическое уравнение теплопроводности, где <math>\kappa</math> — коэффициент теплопроводности, <math>{\beta = \kappa/(\rho c_V)}</math> — коэффициент температуропроводности, точка <math>\dot{(~~)}</math> обозначает дифференцирование по времени <math>t</math>, штрих <math>(~~)'</math> дифференцирование по координате <math>x</math>. Уравнение получено подстановкой закона Фурье вместе с соотношением в уравнение баланса энергии . На практике закон Фурье применяется для описания тепловых процессов на макромасштабе. Однако закон Фурье предсказывает бесконечную скорость распространения сигнала, что может быть парадоксально с физической точки зрения. Изучение процессов на микроуровне, когда характерные длины пропорциональны нескольким длинам межатомных связей,выявило необходимость использования более сложных моделей теплопроводности, учитывающих конечную скорость распространения тепловых возмущений. Значительные отклонения от закона Фурье наблюдаются в одномерных кристаллических структурах . Недавние экспериментальные исследования одномерных наноструктур показали зависимость теплопроводности от длины структуры. Сильные отклонения от закона Фурье были экспериментально показаны для <math>\mathrm{C}</math> и  <math>\mathrm{BN}</math> нанотрубок. Тепловые аномалии, наблюдаемые в наноструктурах, могут быть использованы на практике для разработки перспективных устройств, таких как тепловой диод .
  
 
Аномальная природа тепловых процессов в одномерных кристаллических структурах была показана в работе , где рассматривалась задача о тепловом потоке между двумя тепловыми резервуарами. Множество результатов, посвященных аномальной природе распространения тепла в низкоразмерных структурах, собрано в книге . Модификация закона Фурье, приводящая к уравнению гиперболической теплопроводности (Максвелл, Каттанео, Веронотт, Лыков) , <math>h + 1/ \tau h = - T’, T + 1/ \tau T = T” </math>, где <math>\tau</math> — время релаксации, одна из альтернатив классическому уравнению для описания подобных процессов. Однако, возникают сложности в применении его к описанию тепловых процессов в одномерных кристаллах, так как не удается однозначно определить время релаксации .
 
Аномальная природа тепловых процессов в одномерных кристаллических структурах была показана в работе , где рассматривалась задача о тепловом потоке между двумя тепловыми резервуарами. Множество результатов, посвященных аномальной природе распространения тепла в низкоразмерных структурах, собрано в книге . Модификация закона Фурье, приводящая к уравнению гиперболической теплопроводности (Максвелл, Каттанео, Веронотт, Лыков) , <math>h + 1/ \tau h = - T’, T + 1/ \tau T = T” </math>, где <math>\tau</math> — время релаксации, одна из альтернатив классическому уравнению для описания подобных процессов. Однако, возникают сложности в применении его к описанию тепловых процессов в одномерных кристаллах, так как не удается однозначно определить время релаксации .
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)