Редактирование: Моделирование распространения тепла в треугольной кристаллической решетке

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 5: Строка 5:
 
Рассматривается плоская кристаллическая скалярная решетка. Атомы этой решетки расположены в вершинах равных правильных треугольников и имеют одинаковую массу m. Каждый атом имеет одну степень свободы - он может двигаться вдоль прямой, перпендикулярной плоскости решетки. Схематически решетка представлена на рисунке 1.
 
Рассматривается плоская кристаллическая скалярная решетка. Атомы этой решетки расположены в вершинах равных правильных треугольников и имеют одинаковую массу m. Каждый атом имеет одну степень свободы - он может двигаться вдоль прямой, перпендикулярной плоскости решетки. Схематически решетка представлена на рисунке 1.
 
[[File:Lattice — копия.bmp|thumb|center|Треугольная кристаллическая решетка]]
 
[[File:Lattice — копия.bmp|thumb|center|Треугольная кристаллическая решетка]]
Процесс распространения тепловой энергии в кристалле проходит на молекулярном уровне, как следствие материалы с правильной регулярной структурой могут обладать особыми свойствами теплопроводности, которые могут зависеть от направления. Для исследования свойств теплопроводности в каком-то одном из направлений необходимо смоделировать бесконечную плоскую решетку, задать температуру вдоль выделенного направления (при этом во всех точках, лежащих на одной прямой, перпендикулярной выделенному направлению температура будет одинаковой) и наблюдать за скоростью, с которой тепловая энергия будет распределяться в кристалле. От скорости выравнивания температуры зависят свойства теплопроводности вещества в данном направлении.
+
Процесс распространения тепловой энергии в кристалле проходит на молекулярном уровне, как следствие материалы с правильной регулярной структурой могут обладать особыми свойствами теплопроводности, которые могут зависеть от направления. Для исследования свойств теплопроводности в каком-то одном из направлений необходимо смоделировать бесконечную плоскую решетку, задать температуру вдоль выделенного направления (при этом во всех точках, лежащих на одной прямой, перпендикулярной выделенному направлению температура будет одинаковой) и наблюдать за скоростью, с которой тепловая энергия будет распределяться в кристалле. Чем быстрее температура выравнивается, тем больше теплопроводность кристалла в данном направлении.
  
 
=== Периодичные начальные условия ===
 
=== Периодичные начальные условия ===
 
К сожалению, расчет бесконечной решетки (и как следствие бесконечного числа частиц) потребовал бы бесконечных вычислительных мощностей или бесконечного времени на расчет. Если ограничиться достаточно большой решеткой, но конечных размеров, это приведет к ухудшению точности в связи с влиянием эффектов на границе и потребует значительных ресурсов при вычислениях. Из этой ситуации позволяет выйти периодичность кристаллической решетки. Если задать начальное одномерное распределение температуры, которое можно задать также периодичным. Таким образом мы получаем, что всю бесконечную плоскость можно разбить на конечные участки, на каждом из которых будут одинаковые начальные условия и одинаковая геометрия решетки. Это позволяет заменить задачу про бесконечную плоскость на задачу о конечном участке с периодичными граничными условиями. В качестве периодичной функции температуры вдоль выделенного направления использован синус. Распределение температуры в пространстве задавалось законом:
 
К сожалению, расчет бесконечной решетки (и как следствие бесконечного числа частиц) потребовал бы бесконечных вычислительных мощностей или бесконечного времени на расчет. Если ограничиться достаточно большой решеткой, но конечных размеров, это приведет к ухудшению точности в связи с влиянием эффектов на границе и потребует значительных ресурсов при вычислениях. Из этой ситуации позволяет выйти периодичность кристаллической решетки. Если задать начальное одномерное распределение температуры, которое можно задать также периодичным. Таким образом мы получаем, что всю бесконечную плоскость можно разбить на конечные участки, на каждом из которых будут одинаковые начальные условия и одинаковая геометрия решетки. Это позволяет заменить задачу про бесконечную плоскость на задачу о конечном участке с периодичными граничными условиями. В качестве периодичной функции температуры вдоль выделенного направления использован синус. Распределение температуры в пространстве задавалось законом:
 
::<math>
 
::<math>
     T = T_0 (\sin{\omega x}+1.05)
+
     T = T_0 (sin (\omega x)+1.05)
 
</math>
 
</math>
 
в первом случае и  
 
в первом случае и  
 
::<math>
 
::<math>
     T = T_0 (\sin{\omega y}+1.05),
+
     T = T_0 (sin (\omega y)+1.05),
 
</math>
 
</math>
 
где x,y - декартовы координаты в плоскости решетки, слагаемое 1.05 вводится для строгой положительности температуры во всех точках
 
где x,y - декартовы координаты в плоскости решетки, слагаемое 1.05 вводится для строгой положительности температуры во всех точках
Строка 27: Строка 27:
 
Создание начальной конфигурации решетки, массива температур. Для каждого ряда (или столбца) высчитывается его температура по формуле
 
Создание начальной конфигурации решетки, массива температур. Для каждого ряда (или столбца) высчитывается его температура по формуле
 
::<math>
 
::<math>
T_0 = T_b+\Delta T \sin{ \frac{2 \pi x \cdot \textbf{e_t}}{L}}
+
T_0 = T_b+\Delta T \sin{ \frac{2 \pi \x \cdot \textbf{e_t}}{L}}
 
</math>
 
</math>
Далее всем точкам этого ряда (столбца) задаются случайные скорости, такие, что значение квадрата их модуля не превышает температуры данного ряда (столбца)
+
Далее всем точкам этого ряда (столбца) задаются случайные скорости, такие, что значение квадрата их модуля не превышает температуры данного ряда (столбца)
 
::<math>
 
::<math>
 
     V_0 = random(-\sqrt{\frac{3k_b T(x)}{m}}; \sqrt{\frac{3k_b T(x)}{m}}).
 
     V_0 = random(-\sqrt{\frac{3k_b T(x)}{m}}; \sqrt{\frac{3k_b T(x)}{m}}).
Строка 43: Строка 43:
 
</math>
 
</math>
 
# Осреднение по множеству реализаций. Поскольку температура – величина статистическая, то неправомерно считать ее как квадрат скорости частицы на некий коэффициент. Поэтому для достижения более высокой точности в программе создается несколько наборов начальных скоростей для частиц, каждый из которых отвечает начальному распределению температуры. При подсчете температуры используется осреднение значений по всем реализациям.
 
# Осреднение по множеству реализаций. Поскольку температура – величина статистическая, то неправомерно считать ее как квадрат скорости частицы на некий коэффициент. Поэтому для достижения более высокой точности в программе создается несколько наборов начальных скоростей для частиц, каждый из которых отвечает начальному распределению температуры. При подсчете температуры используется осреднение значений по всем реализациям.
# Вычисление амплитуды. Амплитуда высчитывается как скалярное произведение температуры в данный момент времени и синуса той же частоты, что и в начальных условиях (интегрирование по периоду).
+
# Вычисление амплитуды. Этот этап необходим непосредственно для определения теплопроводности в данном направлении. Амплитуда высчитывается как скалярное произведение температуры в данный момент времени и синуса той же частоты, что и в начальных условиях (интегрирование по периоду).
 
::<math>
 
::<math>
     A = \int_0^l T(x) \sin{\omega x} dx
+
     A = \int_0^l T(x) sin(\omega x) dx
 
</math>
 
</math>
  
Строка 56: Строка 56:
 
В результате численного эксперимента были получены следующий графики:
 
В результате численного эксперимента были получены следующий графики:
  
График зависимости амплитуды от времени при T_max = 50 T0, dt = 0.001 T0, ось распространения тепла - вдоль межатомных связей.
+
График зависимости амплитуды от времени при T_max = 50 T0, dt = 0.001 T0, ось распространения тепла - вдоль межатомных связей.
  
 
[[File:X 1000 points 50T0 p.png|thumb|center|Амплитуда температурного синуса при модуляции вдоль направления межатомных связей]]
 
[[File:X 1000 points 50T0 p.png|thumb|center|Амплитуда температурного синуса при модуляции вдоль направления межатомных связей]]
Строка 71: Строка 71:
  
 
[[File:FS3copcop.jpg|thumb|center|Фундаментальное решение, полученное аналитически]]
 
[[File:FS3copcop.jpg|thumb|center|Фундаментальное решение, полученное аналитически]]
 +
 +
График зависимости амплитуды от времени при T_max = 10 T0, dt = 0.001 T0, ось перпендикулярна одному из направлений связей, 200 точек.
  
 
==Выводы:==
 
==Выводы:==
Строка 90: Строка 92:
 
#Автор работы - [[Давыдова Алена]]
 
#Автор работы - [[Давыдова Алена]]
 
#Руководитель - [[Виталий Андреевич Кузькин]]
 
#Руководитель - [[Виталий Андреевич Кузькин]]
# [[Проект "Термокристалл"]]
 
  
 
== Список использованной литературы ==
 
== Список использованной литературы ==
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)