Редактирование: Моделирование гидроразрыва пласта

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 118: Строка 118:
  
 
=== Моделирование динамики проппанта ===
 
=== Моделирование динамики проппанта ===
* '''Adachi J., Siebrits E.,  Peirce A.,  Desroches J. Computer simulation of hydraulic fractures // Int. J. of Rock Mechanics & Mining Sciences, 44, 2007, pp. 739–757 ([[Медиа: Adachi_SimulHydrFrac.pdf |download, pdf]])''' The transport and placement of proppant within the fracture is usually modeled by representing the slurry (i.e., the mixture of proppant and fluid) as a two-component, interpenetrating continuum. The distribution of proppant in the fracture is given by its volumetric concentration (defined as the probability of finding a proppant particle at a given point in space and time), which is the additional variable to be determined. In modeling proppant transport and placement, it is often assumed that:  
+
* '''Adachia J., Siebritsb E.,  Peircec A.,  Desroches J. Computer simulation of hydraulic fractures // Int. J. of Rock Mechanics & Mining Sciences, 44, 2007, pp. 739–757 ([[Медиа: Adachi_SimulHydrFrac.pdf |download, pdf]])''' The transport and placement of proppant within the fracture is usually modeled by representing the slurry (i.e., the mixture of proppant and fluid) as a two-component, interpenetrating continuum. The distribution of proppant in the fracture is given by its volumetric concentration (defined as the probability of finding a proppant particle at a given point in space and time), which is the additional variable to be determined. In modeling proppant transport and placement, it is often assumed that:  
 
** both proppant and fluid are incompressible;  
 
** both proppant and fluid are incompressible;  
 
** the proppant particles are small compared to a characteristic lengthscale, in this case the fracture width;  
 
** the proppant particles are small compared to a characteristic lengthscale, in this case the fracture width;  
Строка 142: Строка 142:
  
 
* ''''Joseph D.D. Direct Numerical Simulation of Slurry Transport Focusing on Engineering Correlations// Grant proposal, 2000.''' We have taken a major step toward development of two highly efficient parallel finite-element codes called particle movers for the direct numerical simulation of the motions of large numbers of solid particles in flows of Newtonian and viscoelastic fluids. One of the particle movers is based on moving unstructured meshes (Arbitrary Lagrangian-Eulerian or ALE) and the other (Distributed Lagrange Multiplier or DLM) on a structured mesh using a newmethod involving a distribution of Lagrange multipliers to ensure that the regions of space occupied by solids are in a rigid motion following Newton’s laws. The DLM particle mover evolved from well-known  embedding methods and its potential for applications seems to be very great since the problems of remeshing, projection and so on which plague methods based on unstructured grids have been circumvented. On the other hand, the ALE methodology is well suited for problems in irregular domains and it is at present the only code in the world which can move solid particles in a viscoelastic fluid. By comparing results from these two codes on common problems, we are able to evaluate both. The research proposed under this KDI/NCC initiative has two goals. One is to develop state-of-the-art particle movers based on DNS; we aim to move thousands of particles in 3D slurry transport and fluidized bed calculations at the flow parameters relevant to applications. The second goal of our KDI/NCC research is to develop effective procedures for converting the results of DNS into forms which can be used in practical applications.  One example of how to use DNS is the expansion of a fluidized bed.  Sand transport in fractured oil and gas reservoirs is another system in which the ways that DNS can impact field operations is not obvious. In this system, the effects of  microstructure at the particle level scale into particle placements in the fracture at the field level. We are going to focus our research on how to use DNS on this problem, partnering with oil and gas companies in the proppant (“prop open”) transport consortium STIMLAB.
 
* ''''Joseph D.D. Direct Numerical Simulation of Slurry Transport Focusing on Engineering Correlations// Grant proposal, 2000.''' We have taken a major step toward development of two highly efficient parallel finite-element codes called particle movers for the direct numerical simulation of the motions of large numbers of solid particles in flows of Newtonian and viscoelastic fluids. One of the particle movers is based on moving unstructured meshes (Arbitrary Lagrangian-Eulerian or ALE) and the other (Distributed Lagrange Multiplier or DLM) on a structured mesh using a newmethod involving a distribution of Lagrange multipliers to ensure that the regions of space occupied by solids are in a rigid motion following Newton’s laws. The DLM particle mover evolved from well-known  embedding methods and its potential for applications seems to be very great since the problems of remeshing, projection and so on which plague methods based on unstructured grids have been circumvented. On the other hand, the ALE methodology is well suited for problems in irregular domains and it is at present the only code in the world which can move solid particles in a viscoelastic fluid. By comparing results from these two codes on common problems, we are able to evaluate both. The research proposed under this KDI/NCC initiative has two goals. One is to develop state-of-the-art particle movers based on DNS; we aim to move thousands of particles in 3D slurry transport and fluidized bed calculations at the flow parameters relevant to applications. The second goal of our KDI/NCC research is to develop effective procedures for converting the results of DNS into forms which can be used in practical applications.  One example of how to use DNS is the expansion of a fluidized bed.  Sand transport in fractured oil and gas reservoirs is another system in which the ways that DNS can impact field operations is not obvious. In this system, the effects of  microstructure at the particle level scale into particle placements in the fracture at the field level. We are going to focus our research on how to use DNS on this problem, partnering with oil and gas companies in the proppant (“prop open”) transport consortium STIMLAB.
 +
  
 
== Возможные направления исследований ==
 
== Возможные направления исследований ==
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)