Редактирование: Корреляции перемещений в кристаллах (компьютерное моделирование)

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
Расчеты: [[Панченко Артём]]
 
Расчеты: [[Панченко Артём]]
  
== Треугольная кристаллическая решётка ==
+
=Корреляция колебаний=
 +
==ГЦК==
  
Рассматривается образец размерами 100x100 частиц, с периодическими граничными условиями, взаимодействие частиц описывается потенциалом Морзе с параметром <math>{\alpha}{a_0}=6</math>, учитывается взаимодействие с первой координационной сферой, начальная кинетическая энергия равна <math>{E_{kin}}=10^{-5}{D}</math>. Изменение параметров оговорено отдельно.
+
Рассчитаны корреляции <math>\mathbf{A}\mathbf{A_\alpha}</math>, <math>\mathbf{u}\mathbf{u}</math>, <math>\mathbf{u}\mathbf{u_\alpha}</math> в системе координат связанных со связью и найдено среднее по всем связям. Ось абсцисс направлена по связи, ось ординат перпендикулярно (по другой связи), ось аппликат по векторному произведению абсциссы и ординаты. Тензоры диагональны с точность <math>10^{-3}</math>.
  
* Проведено сравнение с результатами экспериментов по рассеиванию электронов: [[media:Correlation effects among thermal displacements of atoms.pdf|T. Sakuma et al., Correlation effects among thermal displacements of atoms in Vse by diffuse neutron scattering measurement // J Thermal Anal Calorim, 99, 173-176 (2010)]]
 
  
* Результаты аналитического расчёта корреляции из статфизики приведены в статье: [[media:On the Interatomic Correlations and Mean Square....pdf|C. G. Rodrigues, M. F. Pascual and V. I. Zubovy, On the Interatomic Correlations and Mean Square Relative Atomic Displacements in an Anharmonic BCC Crystal // Brazilian Journal of Physics, vol. 27, no. 4, december, 1997]]
+
При отсутствии внешних напряжений зависимость <math>\mathbf{u}\mathbf{u_\alpha}</math> от ширины потенциальной ямы для потенциала морзе отсутствует (Рис.1.1).
  
Рассчитаны корреляции <math>\langle\mathbf{A}\mathbf{A}\rangle</math>, <math>\langle\mathbf{u}\mathbf{u}\rangle</math>, <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> в системе координат связанных со связью и найдено среднее по всем связям, а затем усреднено по 10 рассчётам. Ось абсцисс направлена по связи, ось ординат перпендикулярно (векторное произведение оси абсцисс и вектора перпендикулярного плоскости). Тензоры диагональны с точностью <math>10^{-3}</math>.
+
При постоянной ширине потенциальной ямы компоненты <math>\mathbf{u}\mathbf{u_\alpha}</math> зависят от гидростатической деформации линейно, при этом <math>\mathbf{j}\mathbf{j}</math> компонента с расширением убывает, а <math>\mathbf{k}\mathbf{k}</math> возрастает (Рис.1.2).
  
<gallery widths=500px heights=330px perrow = 2>
 
Файл:uu_a___2D_Morse.png|Рис. 1.1. Зависимость диагональных компонент тензора <math>\mathbf{u}\mathbf{u_\alpha}</math> от номера расстояния.
 
Файл:AA_a_2D_Morse_systemsizeXdY.png|Рис. 1.2. Зависимость <math>\langle\mathbf{A}\mathbf{A}\rangle</math> от размера системы при кратном соотношении количества слоёв.
 
Файл:uu_a___3D_Morse_temperature.png|Рис. 1.3. Зависимость <math>\mathbf{u}\mathbf{u_\alpha}</math> от начальной кинетической энергии.
 
Файл:uu_a___2D_Morse_alfa.png|Рис. 1.4. Зависимость <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> от <math>{\alpha}{a_0}</math>.
 
Файл:uu_a___2D_Morse_epsion.png|Рис. 1.5. Зависимость <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> от <math>\varepsilon</math>.
 
Файл:uu_a___2D_Morse_a_cut.png|Рис. 1.6. Зависимость <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> от радиуса обрезания.
 
Файл:uu_a___2D_Morse_YY_epsion.png|Рис. 1.7. Зависимость <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> от <math>\varepsilon</math>.
 
</gallery>
 
  
Результаты расчёта с приведёнными выше параметрами представлены на Рис.1.1.
+
[[Файл:uu_a___3D_Morse_epsion.png|400px|thumb|left|Рис. 1.1. Зависимость <math>\mathbf{u}\mathbf{u_\alpha}</math> от <math>\varepsilon</math>.]]
  
Размер системы выбран исходя из результатов представленных на Рис.1.2.
+
[[Файл:uu_a___3D_Morse_alfa.png|400px|thumb|center|Рис. 1.2. Зависимость <math>\mathbf{u}\mathbf{u_\alpha}</math> от <math>{\alpha}{a_0}</math>.]]
 +
 
 +
<br style="clear: both" />
  
Из Рис.1.3, Рис.1.4, Рис.1.5, Рис.1.6 можно сделать вывод о слабой зависимости отношения продольных корреляций к дисперсии от <math>{E_{kin}}</math>, <math>{\alpha}{a_0}</math>, <math>{a_{cut}}</math>, <math>\varepsilon</math> и таким образом это отношение является фактически константой.
+
==2D Треугольная==
  
Однако обнаружено влияние внешних напряжений (Рис.1.7) на отношение поперечной корреляции к продольной, таким образом мы можем сделать предположение, что это отношение зависит от внутренних напряжений.
+
Рассчитаны корреляции <math>\langle\mathbf{A}\mathbf{A}\rangle</math>, <math>\langle\mathbf{u}\mathbf{u}\rangle</math>, <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> в системе координат связанных со связью и найдено среднее по всем связям. Ось абсцисс направлена по связи, ось ординат перпендикулярно (векторное произведение оси абсцисс и вектора перпендикулярного плоскости). Тензоры диагональны с точностью <math>10^{-3}</math>.
  
 +
Отношение перпендикулярной компоненты корреляции <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> к продольной увеличивается при растяжении, и не имеет выраженной зависимости от <math>{\alpha}{a_0}</math> (Рис.1.3). 
  
 +
Отношение перпендикулярной компоненты корреляции <math>\langle\mathbf{A}\mathbf{A}\rangle</math> к продольной уменьшается при растяжении, можно заметить слабое уменьшение отношение с ростом <math>{\alpha}{a_0}</math> (Рис.1.4). 
  
Отношение перпендикулярной компоненты корреляции <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> к продольной увеличивается при растяжении, и не имеет выраженной зависимости от <math>{\alpha}{a_0}</math> (Рис.1.3).
+
[[Файл:uu_a___2D_Morse_epsion_alfa.png|400px|thumb|left|Рис. 1.3. Зависимость <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> от <math>\varepsilon</math> при различных <math>{\alpha}{a_0}</math>.]]
 +
[[Файл:AA_a___2D_Morse_epsion_alfa.png|400px|thumb|center|Рис. 1.4. Зависимость <math>\langle\mathbf{A}\mathbf{A}\rangle</math> от <math>\varepsilon</math> при различных <math>{\alpha}{a_0}</math>.]]
  
Отношение перпендикулярной компоненты корреляции <math>\langle\mathbf{A}\mathbf{A}\rangle</math> к продольной уменьшается при растяжении, можно заметить слабое уменьшение отношение с ростом м (Рис.1.4). 
 
  
Проведем анализ графиков Рис. 1.3 - 1.4 ([[А.М. Кривцов]]), данный анализ проведён по старым графикам, однако значения на графиках фактически не изменились.
+
Проведем анализ графиков Рис. 1.3 - 1.4 ([[А.М. Кривцов]]).
  
 
{| class="wikitable"  
 
{| class="wikitable"  
Строка 60: Строка 55:
 
| 0.810  
 
| 0.810  
 
| 0.825  
 
| 0.825  
| 0.840
+
| 0.830
 
| Рис. 1.3
 
| Рис. 1.3
 
| отношение поперечной составляющей тензора <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> к продольной  
 
| отношение поперечной составляющей тензора <math>\langle\mathbf{u}\mathbf{u}'\rangle</math> к продольной  
Строка 67: Строка 62:
 
| 0.716  
 
| 0.716  
 
| 0.706  
 
| 0.706  
| 0.692
+
| 0.679
 
| расчет
 
| расчет
 
| относительная продольная корреляция перемещений
 
| относительная продольная корреляция перемещений
Строка 74: Строка 69:
 
| 0.580  
 
| 0.580  
 
| 0.582  
 
| 0.582  
| 0.582
+
| 0.564
 
| расчет
 
| расчет
 
| относительная поперечная корреляция перемещений
 
| относительная поперечная корреляция перемещений
Строка 85: Строка 80:
  
 
На основании данных таблицы можно сделать следующие выводы.
 
На основании данных таблицы можно сделать следующие выводы.
* В рассмотренном интервале деформаций (от -5% до 5%) зависимости величин <math>p</math> и <math>q</math> от деформаций можно считать линейными.
+
* В рассмотренном интервале деформаций (от -5% до 5%) зависмости <math>p</math> и <math>q</math> от деформаций можно считать линейными.
* Относительные корреляции <math>\beta</math> и <math>\gamma</math> в рассматриваемом интервале деформаций меняются незначительно.
+
* Зависимость <math>\beta</math> и <math>\gamma</math> от деформаций оказывается заметно нелинейной.
 +
* В целом величины <math>p,q</math> и <math>\beta,\gamma</math> в рассматриваемом интервале деформаций меняются незначительно.
 
* Относительная поперечная корреляция <math>\gamma</math> несколько меньше, чем относительная продольная <math>\beta</math>, что представляется разумным.
 
* Относительная поперечная корреляция <math>\gamma</math> несколько меньше, чем относительная продольная <math>\beta</math>, что представляется разумным.
* Значения относительных корреляции <math>\beta</math> и <math>\gamma</math> сравнимы с единицей перемещения ближайших частиц сильно коррелируют. Есть основания полагать, что с увеличением числа частиц корреляции еще усилятся — ''необходимо указать, сколько частиц использовалось при расчете''. Желательно проверить влияние числа частиц на результат. На корреляции могут также оказывать влияния термостаты, баростаты и т.д.
+
* Значения относительных корреляции <math>\beta</math> и <math>\gamma</math> сравнимы с единицей, '''что странно'''. Получается, что перемещения ближайших частиц сильно коррелируют. ''Не связано ли это с использованием термостата или какого-то другого вычислительного приема?''
  
  
 
Отметим, что согласно формуле <math>p = (1-\gamma)/(1-\beta)</math>, тензор <math>\langle\mathbf{A}\mathbf{A}\rangle</math> будет близок к шаровому (<math>p \approx 1</math>) в одном из двух случаев:
 
Отметим, что согласно формуле <math>p = (1-\gamma)/(1-\beta)</math>, тензор <math>\langle\mathbf{A}\mathbf{A}\rangle</math> будет близок к шаровому (<math>p \approx 1</math>) в одном из двух случаев:
* относительные корреляции малы: <math>|\beta|\ll1,\ |\gamma|\ll1</math>;
+
* Относительные корреляции малы: <math>|\beta|\ll1</math>, <math>|\gamma|\ll1</math>.
* относительные корреляции близки: <math>\beta\approx\gamma</math>.
+
* Относительные корреляции близки: <math>\beta\approx\gamma</math>.
 
В рассматриваемом случае относительные корреляции не малы, и, хоть и не очень значительно, но различаются, что приводит к существенному отклонению формы тензора <math>\langle\mathbf{A}\mathbf{A}\rangle</math> от шаровой (<math>p \approx 1.4</math>).
 
В рассматриваемом случае относительные корреляции не малы, и, хоть и не очень значительно, но различаются, что приводит к существенному отклонению формы тензора <math>\langle\mathbf{A}\mathbf{A}\rangle</math> от шаровой (<math>p \approx 1.4</math>).
  
<br style="clear: both" />
+
=Тепловое расширение=
 +
Для определения коэффициента теплового расширения использовалось два подхода: при постоянном объёме и постоянном давлении (с помощью баростата давление приближалось к нулю).
  
== ГЦК решетка ==
+
==ГЦК==
 +
===Леннард-Джонс===
 +
====Постоянный объём====
 +
ГЦК кристалл 30x30x30 ГЦК ячеек (??? частиц), периодические граничные условия, релаксация системы в течении 10*Tp, Tp = T0p/200, полное время определения давления 20*Tp, время определения точек среднего 3*Tp. Температура системы от 1e-7*Tk, до 1.9e-6*Tk.
 +
На первом шаге задаются начальные скорости согласно нормальному распределению, затем система релаксирует, и далее вычисляется давление на основе метода Кривцова-Кузькина.
  
Рассчитаны корреляции <math>\mathbf{A}\mathbf{A_\alpha}</math>, <math>\mathbf{u}\mathbf{u}</math>, <math>\mathbf{u}\mathbf{u_\alpha}</math> в системе координат связанных со связью и найдено среднее по всем связям. Ось абсцисс направлена по связи, ось ординат перпендикулярно (по другой связи), ось аппликат по векторному произведению абсциссы и ординаты. Тензоры диагональны с точность <math>10^{-3}</math>.
+
Коэффициент теплового расширения определённый по первой точке: 0.127474, теоретическое значение: 0.131944, относительно отклонение от теоретического значения: 3.39%.
 
 
 
 
При отсутствии внешних напряжений зависимость <math>\mathbf{u}\mathbf{u_\alpha}</math> от ширины потенциальной ямы для потенциала морзе отсутствует (Рис.1.1).
 
 
 
При постоянной ширине потенциальной ямы компоненты <math>\mathbf{u}\mathbf{u_\alpha}</math> зависят от гидростатической деформации линейно, при этом <math>\mathbf{j}\mathbf{j}</math> компонента с расширением убывает, а <math>\mathbf{k}\mathbf{k}</math> возрастает (Рис.1.2).
 
 
 
 
 
[[Файл:uu_a___3D_Morse_epsion.png|500px|thumb|left|Рис. 1.1. Зависимость <math>\mathbf{u}\mathbf{u_\alpha}</math> от <math>\varepsilon</math>.]]
 
 
 
[[Файл:uu_a___3D_Morse_alfa.png|500px|thumb|center|Рис. 1.2. Зависимость <math>\mathbf{u}\mathbf{u_\alpha}</math> от <math>{\alpha}{a_0}</math>.]]
 
 
 
<br style="clear: both" />
 
  
== См. также ==
+
Коэффициент теплового расширения определённый по наклону (Рис.1): 0.12749, теоретическое значение: 0.131944, относительно отклонение от теоретического значения: 3.38%.
  
* [[Тепловое расширение кристаллов (компьютерное моделирование)]]
+
[[Файл:Graph2.png|400px|thumb|left|Рис. 1. Зависимость объёмной деформации от температуры. 1 - Значение определённое при усреденении по всему интервалу, 2 - усреднение по малым интервалам]]
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)