КП: Молекула углекислого газа — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Потенциал Морзе)
(Общие сведения по теме)
Строка 18: Строка 18:
 
== Общие сведения по теме ==
 
== Общие сведения по теме ==
  
Для решения задачи будем использовать два потенциала: потенциал Морзе и потенциал Леннарда-Джонса.
+
Для решения задачи будем использовать два потенциала: потенциал Морзе и потенциал Леннард-Джонса.
  
 
===== [[Потенциал Морзе |  Потенциал Морзе ]] =====
 
===== [[Потенциал Морзе |  Потенциал Морзе ]] =====
Строка 43: Строка 43:
 
     {\bf F}({\bf r})= -\nabla\varPi(r) = 2\alpha D\left[e^{-2\alpha(r-a)}-e^{-\alpha(r-a)}\right]\frac{{\bf r}}{r}
 
     {\bf F}({\bf r})= -\nabla\varPi(r) = 2\alpha D\left[e^{-2\alpha(r-a)}-e^{-\alpha(r-a)}\right]\frac{{\bf r}}{r}
 
</math>
 
</math>
-
+
 
 +
===== [[Потенциал Леннард-Джонса |  Потенциал Леннард-Джонса]] =====
 +
Также парный силовой потенциал взаимодействия.
 +
Определяется формулой:
 +
::<math>
 +
    \varPi(r) = D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right],
 +
</math>
 +
 
 +
где
 +
* <math>r</math> — расстояние между частицами,
 +
* <math>D</math> — энергия связи,
 +
* <math>a</math> — длина связи.
 +
 
 +
Сила взаимодействия, соответствующая потенциалу Леннард-Джонса, вычисляется по формуле
 +
::<math>
 +
    F(r) = \frac{12D}{a}\left[\left(\frac{a}{r}\right)^{13} - \left(\frac{a}{r}\right)^{7}\right].
 +
</math>
 +
 
 +
Векторная сила взаимодействия определяется формулой
 +
::<math>
 +
    {\bf F}({\bf r})= -\nabla\varPi(r) = \frac{12D}{a^2}\left[\left(\frac{a}{r}\right)^{14}-\left(\frac{a}{r}\right)^{8}\right]{\bf r}
 +
</math>
  
 
== Решение ==
 
== Решение ==

Версия 17:05, 19 мая 2015

А.М. Кривцов > Теоретическая механика > Курсовые проекты ТМ 2015 > Молекула метана


Курсовой проект по Теоретической механике

Исполнитель: Смирнов Александр

Группа: 09 (23604)

Семестр: весна 2015

Аннотация проекта

Формулировка задачи

Смоделировать с помощью многочастичного потенциала молекулу углекислого газа ( 2D модель ) и рассмотреть ее простейшую динамику частицы.

Общие сведения по теме

Для решения задачи будем использовать два потенциала: потенциал Морзе и потенциал Леннард-Джонса.

Потенциал Морзе

Парный силовой потенциал взаимодействия. Определяется формулой:

[math] \varPi(r) = D\left[e^{-2\alpha(r-a)}-2e^{-\alpha(r-a)}\right], [/math]

где

  • [math]D[/math] — энергия связи,
  • [math]a[/math] — длина связи,
  • [math]\alpha[/math] — параметр, характеризующий ширину потенциальной ямы.

Потенциал имеет один безразмерный параметр [math]\alpha a [/math]. При [math]\alpha a = 6[/math] взаимодействия Морзе и Леннард-Джонса близки. При увеличении αa ширина потенциальной ямы для взаимодействия Морзе уменьшается, взаимодействие становится более жестким и хрупким. Уменьшение αa приводит к противоположным изменениям — потенциальная яма расширяется, жесткость падает. Сила, соответствующая потенциалу Морзе, вычисляется по формуле:

[math] F(r) = -\varPi'(r) = 2\alpha D\left[e^{-2\alpha(r-a)}-e^{-\alpha(r-a)}\right]. [/math]

Или в векторной форме:

[math] {\bf F}({\bf r})= -\nabla\varPi(r) = 2\alpha D\left[e^{-2\alpha(r-a)}-e^{-\alpha(r-a)}\right]\frac{{\bf r}}{r} [/math]
Потенциал Леннард-Джонса

Также парный силовой потенциал взаимодействия. Определяется формулой:

[math] \varPi(r) = D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], [/math]

где

  • [math]r[/math] — расстояние между частицами,
  • [math]D[/math] — энергия связи,
  • [math]a[/math] — длина связи.

Сила взаимодействия, соответствующая потенциалу Леннард-Джонса, вычисляется по формуле

[math] F(r) = \frac{12D}{a}\left[\left(\frac{a}{r}\right)^{13} - \left(\frac{a}{r}\right)^{7}\right]. [/math]

Векторная сила взаимодействия определяется формулой

[math] {\bf F}({\bf r})= -\nabla\varPi(r) = \frac{12D}{a^2}\left[\left(\frac{a}{r}\right)^{14}-\left(\frac{a}{r}\right)^{8}\right]{\bf r} [/math]

Решение

Обсуждение результатов и выводы


Скачать отчет:
Скачать презентацию:

Ссылки по теме

См. также