Редактирование: Диффузия под напряжением в задачах механохимии

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 174: Строка 174:
 
В случае заданных усилий на поверхности можно найти напряжения <math>\sigma _{11}^0,\sigma _{22}^0</math>, отвечающие условиям баланса сил и моментов:
 
В случае заданных усилий на поверхности можно найти напряжения <math>\sigma _{11}^0,\sigma _{22}^0</math>, отвечающие условиям баланса сил и моментов:
 
<math>
 
<math>
\int\limits_0^H {\sigma _{11}^0} d{x_3} = \int\limits_0^h {{{\left. {\sigma _{11}^ + } \right|}_{{x_1} = {l_1}}}} d{x_3} + \int\limits_h^H {{{\left. {\sigma _{11}^ - } \right|}_{{x_1} = {l_1}}}} d{x_3}, \nonumber\\\int\limits_0^H {\sigma _{22}^0} d{x_3} = \int\limits_0^h {{{\left. {\sigma _{22}^ + } \right|}_{{x_2} = {l_2}}}} d{x_3} + \int\limits_h^H {{{\left. {\sigma _{22}^ - } \right|}_{{x_2} = {l_2}}}} d{x_3}\nonumber\\
+
\int\limits_0^H {\sigma _{11}^0} d{x_3} = \int\limits_0^h {{{\left. {\sigma _{11}^ + } \right|}_{{x_1} = {l_1}}}} d{x_3} + \int\limits_h^H {{{\left. {\sigma _{11}^ - } \right|}_{{x_1} = {l_1}}}} d{x_3}, \nonumber\\&\int\limits_0^H {\sigma _{22}^0} d{x_3} = \int\limits_0^h {{{\left. {\sigma _{22}^ + } \right|}_{{x_2} = {l_2}}}} d{x_3} + \int\limits_h^H {{{\left. {\sigma _{22}^ - } \right|}_{{x_2} = {l_2}}}} d{x_3}\nonumber\\
\int\limits_0^H {{x_3}\sigma _{11}^0} d{x_3} = \int\limits_0^h {{{\left. {{x_3}\sigma _{11}^ + } \right|}_{{x_1} = {l_1}}}} d{x_3} + \int\limits_h^H {{{\left. {{x_3}\sigma _{11}^ - } \right|}_{{x_1} = {l_1}}}} d{x_3}, \nonumber\\\int\limits_0^H {{x_3}\sigma _{22}^0} d{x_3} = \int\limits_0^h {{{\left. {{x_3}\sigma _{22}^ + } \right|}_{{x_2} = {l_2}}}} d{x_3} + \int\limits_h^H {{{\left. {{x_3}\sigma _{22}^ - } \right|}_{{x_2} = {l_2}}}} d{x_3}
+
\int\limits_0^H {{x_3}\sigma _{11}^0} d{x_3} = \int\limits_0^h {{{\left. {{x_3}\sigma _{11}^ + } \right|}_{{x_1} = {l_1}}}} d{x_3} + \int\limits_h^H {{{\left. {{x_3}\sigma _{11}^ - } \right|}_{{x_1} = {l_1}}}} d{x_3}, \nonumber\\&\int\limits_0^H {{x_3}\sigma _{22}^0} d{x_3} = \int\limits_0^h {{{\left. {{x_3}\sigma _{22}^ + } \right|}_{{x_2} = {l_2}}}} d{x_3} + \int\limits_h^H {{{\left. {{x_3}\sigma _{22}^ - } \right|}_{{x_2} = {l_2}}}} d{x_3}
 
</math>
 
</math>
  
Строка 190: Строка 190:
 
\lower0.25ex\hbox{$\scriptstyle  - $}}}{x_3} + B_2^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\lower0.25ex\hbox{$\scriptstyle  - $}}}{x_3} + B_2^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\kern-0.1em/\kern-0.15em
 
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle  - $}}}</math>, и что <math>
+
\lower0.25ex\hbox{$\scriptstyle  - $}}}$, и что $\sigma_{33}=0</math>.
\sigma_{33}=0</math>.
 
  
Из-за условий неразрывности мы получим, что <math>A_{1,2}^ +  = A_{1,2}^ -  = {A_{1,2}},{\rm{ }}B_{1,2}^ +  = B_{1,2}^ -  = {B_{1,2}}</math>. В этом случае напряжения будут выглядеть следующим образом:
+
Из-за условий неразрывности мы получим, что <math>A_{1,2}^ +  = A_{1,2}^ -  = {A_{1,2}},{\rm{ }}B_{1,2}^ +  = B_{1,2}^ -  = {B_{1,2}}</math>. В этом случае напряжения будут выглядеть следующим образом:
  
 
<math>
 
<math>
Строка 203: Строка 202:
  
 
Константы <math>A_1, A_2, B_1, B_2</math> можно найти из уравнений баланса. Функцию напряжений можно найти, заменив <math>\varepsilon_{11}</math> и <math>\varepsilon_{22}</math> на <math>\varepsilon _{11} = A_1{x_3} + B_1,{\rm{ }}\varepsilon _{22} = A_2{x_3} + B_2</math> соответственно.
 
Константы <math>A_1, A_2, B_1, B_2</math> можно найти из уравнений баланса. Функцию напряжений можно найти, заменив <math>\varepsilon_{11}</math> и <math>\varepsilon_{22}</math> на <math>\varepsilon _{11} = A_1{x_3} + B_1,{\rm{ }}\varepsilon _{22} = A_2{x_3} + B_2</math> соответственно.
При постоянном коэффициенте диффузии, проводя вычисления, аналогичные предыдущему пункту, получим, что <math>V\sim(1-\frac{c_{\rm{eq}}}{c_*})</math>.  
+
При постоянном коэффициенте диффузии, проводя вычисления, аналогичные предыдущему пункту, получим, что <math>V\sim(1-\frac{c_{\rm{eq}}}{c_*})</math>. Если коэффициент диффузии зависит от напряжений, то в данном случае он принимает следующий вид:
Если коэффициент диффузии зависит от напряжений, то в данном случае он принимает следующий вид:
 
  
 
<math>
 
<math>
 
D = {D_0}{{\rm{e}}^{\left( {\frac{{{E_ + }}}{{3(1 - {{\rm{\nu }}_ + })}}\left( {\left( {{A_1} + {A_2}} \right){x_3} + \left( {{B_1} + {B_2} - 2{\varepsilon _{{\rm{ch}}}}} \right)} \right)} \right){V_d}/kT}} \Rightarrow D = {D_0}{{\rm{e}}^{\widetilde A{x_3} + \widetilde B}}
 
D = {D_0}{{\rm{e}}^{\left( {\frac{{{E_ + }}}{{3(1 - {{\rm{\nu }}_ + })}}\left( {\left( {{A_1} + {A_2}} \right){x_3} + \left( {{B_1} + {B_2} - 2{\varepsilon _{{\rm{ch}}}}} \right)} \right)} \right){V_d}/kT}} \Rightarrow D = {D_0}{{\rm{e}}^{\widetilde A{x_3} + \widetilde B}}
 
</math>
 
</math>
 
 
Тогда задача диффузии запишется следующим образом:
 
Тогда задача диффузии запишется следующим образом:
 
 
<math>
 
<math>
 
\frac{\partial }{{\partial {x_3}}}\left( {{D_0}{e^{\widetilde A{x_3} + \widetilde B}}\frac{{\partial c}}{{\partial {x_3}}}} \right) = 0\;\quad  \Rightarrow \quad \frac{{{{\rm{d}}^2}c}}{{{\rm{d}}{x_3}^2}} + \widetilde A\frac{{{\rm{d}}c}}{{{\rm{d}}{x_3}}} = 0
 
\frac{\partial }{{\partial {x_3}}}\left( {{D_0}{e^{\widetilde A{x_3} + \widetilde B}}\frac{{\partial c}}{{\partial {x_3}}}} \right) = 0\;\quad  \Rightarrow \quad \frac{{{{\rm{d}}^2}c}}{{{\rm{d}}{x_3}^2}} + \widetilde A\frac{{{\rm{d}}c}}{{{\rm{d}}{x_3}}} = 0
 
</math>
 
</math>
 
 
Решением этого уравнения будет функция <math>c = {c_1}{e^{ - \widetilde A{x_3}}} + {c_2}</math>, с граничными условиями, которые будут выглядеть как:
 
Решением этого уравнения будет функция <math>c = {c_1}{e^{ - \widetilde A{x_3}}} + {c_2}</math>, с граничными условиями, которые будут выглядеть как:
  
 
<math>
 
<math>
  - {D_0}{e^{\widetilde B}}\widetilde A{c_1} + \alpha ({c_*} - {c_1} - {c_2}) = 0,\qquad  - {D_0}{e^{\widetilde B}}\widetilde A{c_1} + {n_*}^2{k_*}({c_1}{e^{ - \widetilde Ah}} + {c_2} - {c_{{\rm{eq}}}}) = 0
+
  - {D_0}{e^{\widetilde B}}\widetilde A{c_1} + \alpha ({c_*} - {c_1} - {c_2}) = 0, \qquad  - {D_0}{e^{\widetilde B}}\widetilde A{c_1} + {n_*}^2{k_*}({c_1}{e^{ - \widetilde Ah}} + {c_2} - {c_{{\rm{eq}}}}) = 0
 
</math>
 
</math>
  
 
Окончательно, концентрация будет выглядеть следующим образом:
 
Окончательно, концентрация будет выглядеть следующим образом:
 
 
<math>
 
<math>
 
c = \frac{{\alpha {c_*}{n_*}^2{k_*}(1 - \frac{{{c_{{\rm{eq}}}}}}{{{c_*}}}){e^{ - \widetilde A{x_3}}} + {D_0}{e^{\widetilde B}}\widetilde A{c_*}\left( {\alpha  + {n_*}^2{k_*}\frac{{{c_{{\rm{eq}}}}}}{{{c_*}}}} \right) + \alpha {n_*}^2{k_*}{c_*}(\frac{{{c_{{\rm{eq}}}}}}{{{c_*}}} - {e^{ - \widetilde Ah}})}}{{{D_0}{e^{\widetilde B}}\widetilde A\left( {\alpha  + {n_*}^2{k_*}} \right) + \alpha {n_*}^2{k_*}(1 - {e^{ - \widetilde Ah}})}}
 
c = \frac{{\alpha {c_*}{n_*}^2{k_*}(1 - \frac{{{c_{{\rm{eq}}}}}}{{{c_*}}}){e^{ - \widetilde A{x_3}}} + {D_0}{e^{\widetilde B}}\widetilde A{c_*}\left( {\alpha  + {n_*}^2{k_*}\frac{{{c_{{\rm{eq}}}}}}{{{c_*}}}} \right) + \alpha {n_*}^2{k_*}{c_*}(\frac{{{c_{{\rm{eq}}}}}}{{{c_*}}} - {e^{ - \widetilde Ah}})}}{{{D_0}{e^{\widetilde B}}\widetilde A\left( {\alpha  + {n_*}^2{k_*}} \right) + \alpha {n_*}^2{k_*}(1 - {e^{ - \widetilde Ah}})}}
Строка 237: Строка 231:
  
 
== Список литературы ==
 
== Список литературы ==
1) Freidin, A.B., Vilchevskaya, E. N., Korolev, I. K.: Stress-assist chemical reactions front propagation in deformable solids. International Journal of Engineering Science, 83 (2014), pp. 57-75.
 
 
2) Prigogine, I., Defay, R.: Chemical thermodynamics. London: Longmans, Green, 1954.
 
 
3) Thermodynamic theory of structure, stability and fluctuation. Wiley Interscience, London, 1971, pg. 50.
 
 
4) Ming-Tzer Lin.: Stress effects and oxidant diffusion in the planar oxidation. (1999). Thesis and Dissertation, Lehigh University. Paper 594
 
 
5) B.E.Deal, A.S. Grove: General relationship for the thermal oxisation of Silicon. Journal of Applied Physics, vol.36(12), December 1965.
 
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)