Редактирование: Диффузия под напряжением в задачах механохимии

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
'''БАКАЛАВРСКАЯ РАБОТА'''<br>
+
== Руководитель ==
''Автор работы'': [[Григорьева Полина]]<br>
+
к.ф.-м.н. Е.Н. Вильчевская
''Научный руководитель'': [[Елена Вильчевская]]<br>
 
 
 
 
== Введение ==
 
== Введение ==
 
Проблема термического окисления кремния сегодня является одной из важнейших проблем в химии в связи с широким использованием и значимостью  технологии кремниевых интегральных схем. Так как объем молекулы диоксида кремния примерно в  2.3 раза больше атома кремния, окисление кремния сопровождается большим увеличением объема. Это значит, что эта проблема принадлежит области механохимии, которая рассматривает химические реакции под действием механических нагрузок.
 
Проблема термического окисления кремния сегодня является одной из важнейших проблем в химии в связи с широким использованием и значимостью  технологии кремниевых интегральных схем. Так как объем молекулы диоксида кремния примерно в  2.3 раза больше атома кремния, окисление кремния сопровождается большим увеличением объема. Это значит, что эта проблема принадлежит области механохимии, которая рассматривает химические реакции под действием механических нагрузок.
Строка 12: Строка 10:
 
*Исследовать влияние зависимости коэффициента диффузии от напряжений.
 
*Исследовать влияние зависимости коэффициента диффузии от напряжений.
  
== Постановка задачи: Модель и уравнения ==
+
== Постановка задачи: Модель ==
 
Теория кинетики химических реакций основана на концепции химических потенциалов и химического сродства, которые являются линейной комбинацией химических потенциалов веществ, принимающих участие в реакции. В классической теории химический потенциал является скаляром. Однако этот подход  действителен только для газов и жидкостей, но редко для твердых тел. Если мы хотим исследовать фазовый переход в деформируемых твердых материалах, нам нужно тензорное выражение для химического потенциала. Это также значит, что химическое сродство тоже станет тензором.
 
Теория кинетики химических реакций основана на концепции химических потенциалов и химического сродства, которые являются линейной комбинацией химических потенциалов веществ, принимающих участие в реакции. В классической теории химический потенциал является скаляром. Однако этот подход  действителен только для газов и жидкостей, но редко для твердых тел. Если мы хотим исследовать фазовый переход в деформируемых твердых материалах, нам нужно тензорное выражение для химического потенциала. Это также значит, что химическое сродство тоже станет тензором.
 
В связи с проблемой, описанной в предыдущем разделе, мы рассмотрим химическую реакцию между твердой и газовой компонентами:
 
В связи с проблемой, описанной в предыдущем разделе, мы рассмотрим химическую реакцию между твердой и газовой компонентами:
Строка 80: Строка 78:
 
Итак, задача сводится к следующим пунктам: сначала мы находим <math>c_{{\rm{eq}}}</math>. Далее, мы находим <math>c(\Gamma )</math>  из задачи диффузии и затем, окончательно, подставляем полученные значения в формулу для нормальной компоненты скорости.
 
Итак, задача сводится к следующим пунктам: сначала мы находим <math>c_{{\rm{eq}}}</math>. Далее, мы находим <math>c(\Gamma )</math>  из задачи диффузии и затем, окончательно, подставляем полученные значения в формулу для нормальной компоненты скорости.
  
== Решение для различных видов механических нагрузок ==
+
== Постановка задачи: Уравнения ==
В этом разделе мы представим аналитическое решение задачи для простейшей геометрии. Станем рассматривать трехмерный прямоугольный параллелепипед: <math>{x_1} \in \left[ { - {l_1},{l_1}} \right], \qquad {x_2} \in \left[ { - {l_2},{l_2}} \right], \qquad {x_3} \in \left[ { - {0},{H}} \right]</math> с реакцией, распространяющейся в направлении оси <math>x_3</math> и фронтом реакции, представленным плоскостью <math>x_3 = h</math>. Считаем, что концентрация не зависит от координат <math>x_1</math> и <math>x_2</math>, поэтому <math>c=c(x_3)</math>, <math>c(\Gamma)=c(h)</math>.
 
[[File:drawing.png|500px]]
 
  
  
Будет изучено два случая механической нагрузки:
+
== Решение для различных видов механических нагрузок ==
первый, перемещения на поверхности тела заданы, и второй, напряжения на поверхности заданы.
 
 
 
Считаем, что нам даны перемещения, которые приложены к телу следующим образом:
 
 
 
 
 
<math>u_1^{{ +  \mathord{\left/
 
{\vphantom { +  - }} \right.
 
}  - }}\left( {{x_1} = \pm {l_1},\;\;{x_2} \in \left[ { - {l_2},{l_2}} \right],\;\;{x_3} \in \left\{ \begin{array}{l}
 
\left( {0,h} \right){\rm{if }} + \\
 
\left( {h,H} \right){\rm{if }} -
 
\end{array} \right.} \right) = u_1^0\nonumber\\
 
u_2^{{ +  \mathord{\left/
 
{\vphantom { +  - }} \right.
 
}  - }}\left( {{x_1} \in \left[ { - {l_1},{l_1}} \right],\;\;{x_2} = \pm {l_2},\;\;{x_3} \in \left\{ \begin{array}{l}
 
\left( {0,h} \right){\rm{if }} + \\
 
\left( {h,H} \right){\rm{if }} -
 
\end{array} \right.} \right) = u_2^0
 
</math>
 
Тогда деформации равномерно распределены по всему телу:
 
 
 
<math>
 
\varepsilon _{11}^ -  = \;\varepsilon _{11}^ +  = \varepsilon _{11}^0 = \frac{{u_1^0}}{{{l_1}}}, \qquad \varepsilon _{22}^ -  = \;\varepsilon _{22}^ +  = \varepsilon _{22}^0 = \frac{{u_2^0}}{{{l_2}}}
 
</math>
 
 
 
Сдвиговые деформации отсутствуют, т.е. <math>\varepsilon _{ij}^ \pm  = 0,i \ne j</math>.
 
 
 
Считаем, что напряжения по оси <math>x_3</math> отсутствуют, т.е. имеем дело с плосконапряженной задачей.
 
Тогда из закона Гука можем вычислить оставшиеся напряжения и деформации:
 
 
 
<math>
 
\varepsilon _{33}^ -  =  - \frac{{{\lambda ^ - }}}{{{\lambda ^ - } + 2{\mu ^ - }}}(\varepsilon _{11}^0 + \varepsilon _{22}^0)
 
</math>
 
 
 
<math>
 
\sigma _{11}^ -  = {\lambda ^ - }\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0 - \frac{{{\lambda ^ - }}}{{{\lambda ^ - } + 2{\mu ^ - }}}(\varepsilon _{11}^0 + \varepsilon _{22}^0)} \right) + 2{\mu ^ - }\varepsilon _{11}^0\nonumber\\
 
 
 
\sigma _{22}^ -  = {\lambda ^ - }\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0 - \frac{{{\lambda ^ - }}}{{{\lambda ^ - } + 2{\mu ^ - }}}(\varepsilon _{11}^0 + \varepsilon _{22}^0)} \right) + 2{\mu ^ - }\varepsilon _{22}^0
 
</math>
 
 
 
Для региона "+":
 
  
<math>
 
{\varepsilon _{33}}^ +  = \frac{{{\textstyle{2 \over 3}}{\mu ^ + } - {k^ + }}}{{{k^ + } + {\textstyle{4 \over 3}}{\mu ^ + }}}\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0} \right) + \frac{{3{k^ + }}}{{{k^ + } + {\textstyle{4 \over 3}}{\mu ^ + }}}{\varepsilon _{{\rm{ch}}}}
 
</math>
 
 
<math>
 
\sigma _{11}^ +  = {\lambda ^ + }\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0 - \frac{{{\lambda ^ + }}}{{{\lambda ^ + } + 2{\mu ^ + }}}\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0} \right) + \frac{{3{k^ + }}}{{{\lambda ^ + } + 2{\mu ^ + }}}{\varepsilon _{{\rm{ch}}}}} \right) + 2{\mu ^ + }\varepsilon _{11}^0 - 3{k^ + }{\varepsilon _{{\rm{ch}}}}\nonumber\\
 
  
\sigma _{22}^ +  = {\lambda ^ + }\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0 - \frac{{{\lambda ^ + }}}{{{\lambda ^ + } + 2{\mu ^ + }}}\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0} \right) + \frac{{3{k^ + }}}{{{\lambda ^ + } + 2{\mu ^ + }}}{\varepsilon _{{\rm{ch}}}}} \right) + 2{\mu ^ + }\varepsilon _{22}^0 - 3{k^ + }{\varepsilon _{{\rm{ch}}}}
 
</math>
 
  
Для удобства расчетов с значениями параметров конкретного материала перейдем к модулю Юнга, <math>E</math>, и коэффициенту Пуассона, <math>\nu</math>, и запишем выражение для функции напряжений, входящей в состав выражения для вычисления <math>c_{eq}</math>:
+
== Учет зависимости коэффициента диффузии от напряжений ==
  
<math>
 
\left( {{\boldsymbol\sigma _ - }:{\boldsymbol\varepsilon _ - } - {\boldsymbol\sigma _ + }:{\boldsymbol\varepsilon _ + } + {\boldsymbol\sigma _ + }:{\boldsymbol\varepsilon _{{\rm{ch}}}}} \right) =\nonumber\\
 
\left( {\frac{{{E_ - }}}{{1 - \nu _ - ^2}} - \frac{{{E_ + }}}{{1 - \nu _ + ^2}}} \right)\mathop {\varepsilon _{11}^0}\nolimits^2  + \left( {\frac{{{E_ - }}}{{1 - \nu _ - ^2}} - \frac{{{E_ + }}}{{1 - \nu _ + ^2}}} \right)\mathop {\varepsilon _{22}^0}\nolimits^2  +
 
{2\left( {\frac{{{\nu _ - }{E_ - }}}{{1 - \nu _ - ^2}} - \frac{{{\nu _ + }{E_ + }}}{{1 - \nu _ + ^2}}} \right)\varepsilon _{11}^0\varepsilon _{22}^0 + \frac{{2{E_ + }}}{{\left( {1 - \nu _ + ^{}} \right)}}\varepsilon _{{\rm{ch}}}^{}(\varepsilon _{11}^0 + \varepsilon _{22}^0) - \frac{{2{E_ + }}}{{\left( {1 - \nu _ + ^{}} \right)}}\varepsilon _{{\rm{ch}}}^2}
 
</math>
 
  
Реакция идет только при <math>{A_{nn}} > 0</math>. Следовательно, при отсутствии внешних деформаций <math>\varepsilon _{11}^0 = 0,\;{\rm{ }}\varepsilon _{22}^0 = 0</math> и при <math>{c_{{\rm{eq}}}} = {c_*}</math> реакция может идти только при:
 
<math>
 
\gamma  > {\gamma _*} = \frac{{{E_ + }}}{{1 - {{\rm{\nu }}_ + }}}\varepsilon _{{\rm{ch}}}^2
 
</math>
 
 
В этом случае выражение для коэффициента диффузии примет вид :
 
<math>
 
D = {D_0}{e^{\left( {\frac{{{E_ + }}}{{3(1 - \nu _ + )}}\left( {\varepsilon _{11}^0 + \varepsilon _{22}^0 - 2{\varepsilon _{{\rm{ch}}}}} \right)} \right){V_d}/kT}}
 
</math>
 
 
<math>D</math> не зависит от координаты <math>x_3</math>, поэтому уравнение диффузии примет вид:
 
<math>
 
{\rm{\Delta }}c = 0\;\quad  \Rightarrow \quad \frac{{{\partial ^2}c}}{{\partial x_3^2}} = 0
 
</math>
 
 
Решением этого уравнения будет линейная функция <math>c = A{x_3} + B</math>. Из граничных условий можно найти константы <math>A</math> и <math>B</math>. В итоге, функция концентрации будет выглядеть следующим образом:
 
 
<math>
 
c = \;\frac{{D\alpha {c_*} + {n_*}^2{k_*}\alpha h{c_*} - D{n_*}^2{k_*}{c_{{\rm{eq}}}} - \alpha {n_*}^2{k_*}\left( {{c_*} - {c_{{\rm{eq}}}}} \right){x_3}}}{{\left( {D\alpha  + {n_*}^2{k_*}\alpha h - D{n_*}^2{k_*}} \right)}}
 
</math>
 
 
Подставляя полученное выражение в уравнение для скорости распространения реакции, окончательно получим:
 
 
<math>
 
V = \frac{{{n_ - }{M_ - }{n_*}{k_*}D\alpha {c_*}(1 - \frac{{{c_{{\rm{eq}}}}}}{{{c_*}}})}}{{{\rho _ - }\left( {D\alpha  + {n_*}^2{k_*}\alpha h - D{n_*}^2{k_*}} \right)}}
 
</math>
 
 
В случае заданных усилий на поверхности можно найти напряжения <math>\sigma _{11}^0,\sigma _{22}^0</math>, отвечающие условиям баланса сил и моментов:
 
<math>
 
\int\limits_0^H {\sigma _{11}^0} d{x_3} = \int\limits_0^h {{{\left. {\sigma _{11}^ + } \right|}_{{x_1} = {l_1}}}} d{x_3} + \int\limits_h^H {{{\left. {\sigma _{11}^ - } \right|}_{{x_1} = {l_1}}}} d{x_3}, \nonumber\\\int\limits_0^H {\sigma _{22}^0} d{x_3} = \int\limits_0^h {{{\left. {\sigma _{22}^ + } \right|}_{{x_2} = {l_2}}}} d{x_3} + \int\limits_h^H {{{\left. {\sigma _{22}^ - } \right|}_{{x_2} = {l_2}}}} d{x_3}\nonumber\\
 
\int\limits_0^H {{x_3}\sigma _{11}^0} d{x_3} = \int\limits_0^h {{{\left. {{x_3}\sigma _{11}^ + } \right|}_{{x_1} = {l_1}}}} d{x_3} + \int\limits_h^H {{{\left. {{x_3}\sigma _{11}^ - } \right|}_{{x_1} = {l_1}}}} d{x_3}, \nonumber\\\int\limits_0^H {{x_3}\sigma _{22}^0} d{x_3} = \int\limits_0^h {{{\left. {{x_3}\sigma _{22}^ + } \right|}_{{x_2} = {l_2}}}} d{x_3} + \int\limits_h^H {{{\left. {{x_3}\sigma _{22}^ - } \right|}_{{x_2} = {l_2}}}} d{x_3}
 
</math>
 
 
Чтобы найти напряжения из закона Гука, сделаем предположение, что <math>\varepsilon _{11}^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\kern-0.1em/\kern-0.15em
 
\lower0.25ex\hbox{$\scriptstyle  - $}}} = A_1^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\kern-0.1em/\kern-0.15em
 
\lower0.25ex\hbox{$\scriptstyle  - $}}}{x_3} + B_1^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\kern-0.1em/\kern-0.15em
 
\lower0.25ex\hbox{$\scriptstyle  - $}}}, {\rm{    }}\varepsilon _{22}^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\kern-0.1em/\kern-0.15em
 
\lower0.25ex\hbox{$\scriptstyle  - $}}} = A_2^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\kern-0.1em/\kern-0.15em
 
\lower0.25ex\hbox{$\scriptstyle  - $}}}{x_3} + B_2^{{\raise0.5ex\hbox{$\scriptstyle  + $}
 
\kern-0.1em/\kern-0.15em
 
\lower0.25ex\hbox{$\scriptstyle  - $}}}</math>, и что <math>
 
\sigma_{33}=0</math>.
 
 
Из-за условий неразрывности мы получим, что <math>A_{1,2}^ +  = A_{1,2}^ -  = {A_{1,2}},{\rm{ }}B_{1,2}^ +  = B_{1,2}^ -  = {B_{1,2}}</math>. В этом случае напряжения будут выглядеть следующим образом:
 
 
<math>
 
\sigma _{11}^ -  = \frac{{{E_ - }}}{{1 - {\rm{\nu }}_ - ^2}}\left( {\left( {{A_1} + {\rm{\nu }}_ - {A_2}} \right){x_3} + {B_1} + {\rm{\nu }}_ - {B_2}} \right)\nonumber\\
 
\sigma _{22}^ -  = \frac{{{E_ - }}}{{1 - {\rm{\nu }}_ - ^2}}\left( {\left( {{\rm{\nu }}_ - {A_1} + {A_2}} \right){x_3} + {\rm{\nu }}_ - {B_1} + {B_2}} \right)\nonumber\\
 
\sigma _{11}^ +  = \frac{{{E_ + }}}{{1 - {\rm{\nu }}_ + ^2}}\left( {\left( {{A_1} + {\rm{\nu }}_ + {A_2}} \right){x_3} + {B_1} + {\rm{\nu }}_ + {B_2}} \right) - \frac{{{E_ + }}}{{1 - {\rm{\nu }}_ + ^{}}}{\varepsilon _{{\rm{ch}}}}\nonumber\\
 
\sigma _{11}^ +  = \frac{{{E_ + }}}{{1 - {\rm{\nu }}_ + ^2}}\left( {\left( {{\rm{\nu }}_ + {A_1} + {A_2}} \right){x_3} + {\rm{\nu }}_ + {B_1} + {B_2}} \right) - \frac{{{E_ + }}}{{1 - {\rm{\nu }}_ + }}{\varepsilon _{{\rm{ch}}}}
 
</math>
 
 
Константы <math>A_1, A_2, B_1, B_2</math> можно найти из уравнений баланса. Функцию напряжений можно найти, заменив <math>\varepsilon_{11}</math> и <math>\varepsilon_{22}</math> на <math>\varepsilon _{11} = A_1{x_3} + B_1,{\rm{ }}\varepsilon _{22} = A_2{x_3} + B_2</math> соответственно.
 
При постоянном коэффициенте диффузии, проводя вычисления, аналогичные предыдущему пункту, получим, что <math>V\sim(1-\frac{c_{\rm{eq}}}{c_*})</math>.
 
Если коэффициент диффузии зависит от напряжений, то в данном случае он принимает следующий вид:
 
 
<math>
 
D = {D_0}{{\rm{e}}^{\left( {\frac{{{E_ + }}}{{3(1 - {{\rm{\nu }}_ + })}}\left( {\left( {{A_1} + {A_2}} \right){x_3} + \left( {{B_1} + {B_2} - 2{\varepsilon _{{\rm{ch}}}}} \right)} \right)} \right){V_d}/kT}} \Rightarrow D = {D_0}{{\rm{e}}^{\widetilde A{x_3} + \widetilde B}}
 
</math>
 
 
Тогда задача диффузии запишется следующим образом:
 
 
<math>
 
\frac{\partial }{{\partial {x_3}}}\left( {{D_0}{e^{\widetilde A{x_3} + \widetilde B}}\frac{{\partial c}}{{\partial {x_3}}}} \right) = 0\;\quad  \Rightarrow \quad \frac{{{{\rm{d}}^2}c}}{{{\rm{d}}{x_3}^2}} + \widetilde A\frac{{{\rm{d}}c}}{{{\rm{d}}{x_3}}} = 0
 
</math>
 
 
Решением этого уравнения будет функция <math>c = {c_1}{e^{ - \widetilde A{x_3}}} + {c_2}</math>, с граничными условиями, которые будут выглядеть как:
 
 
<math>
 
- {D_0}{e^{\widetilde B}}\widetilde A{c_1} + \alpha ({c_*} - {c_1} - {c_2}) = 0,\qquad  - {D_0}{e^{\widetilde B}}\widetilde A{c_1} + {n_*}^2{k_*}({c_1}{e^{ - \widetilde Ah}} + {c_2} - {c_{{\rm{eq}}}}) = 0
 
</math>
 
 
Окончательно, концентрация будет выглядеть следующим образом:
 
 
<math>
 
c = \frac{{\alpha {c_*}{n_*}^2{k_*}(1 - \frac{{{c_{{\rm{eq}}}}}}{{{c_*}}}){e^{ - \widetilde A{x_3}}} + {D_0}{e^{\widetilde B}}\widetilde A{c_*}\left( {\alpha  + {n_*}^2{k_*}\frac{{{c_{{\rm{eq}}}}}}{{{c_*}}}} \right) + \alpha {n_*}^2{k_*}{c_*}(\frac{{{c_{{\rm{eq}}}}}}{{{c_*}}} - {e^{ - \widetilde Ah}})}}{{{D_0}{e^{\widetilde B}}\widetilde A\left( {\alpha  + {n_*}^2{k_*}} \right) + \alpha {n_*}^2{k_*}(1 - {e^{ - \widetilde Ah}})}}
 
</math>
 
 
Скорость в этом случае запишется согласно следующей формуле:
 
 
<math>
 
V = \frac{{{n_ - }{M_ - }}}{{{\rho _ - }}}\frac{{{D_0}{e^{\widetilde B}}\widetilde A\alpha {c_*}{k_*}{n_*}\left( {1 - \frac{{{c_{{\rm{eq}}}}}}{{{c_*}}}} \right)}}{{{D_0}{e^{\widetilde B}}\widetilde A\left( {\alpha  + {n_*}^2{k_*}} \right) + \alpha {n_*}^2{k_*}(1 - {e^{ - \widetilde Ah}})}}
 
</math>
 
  
 
== Результаты ==
 
== Результаты ==
  
 
== Список литературы ==
 
== Список литературы ==
1) Freidin, A.B., Vilchevskaya, E. N., Korolev, I. K.: Stress-assist chemical reactions front propagation in deformable solids. International Journal of Engineering Science, 83 (2014), pp. 57-75.
 
 
2) Prigogine, I., Defay, R.: Chemical thermodynamics. London: Longmans, Green, 1954.
 
 
3) Thermodynamic theory of structure, stability and fluctuation. Wiley Interscience, London, 1971, pg. 50.
 
 
4) Ming-Tzer Lin.: Stress effects and oxidant diffusion in the planar oxidation. (1999). Thesis and Dissertation, Lehigh University. Paper 594
 
 
5) B.E.Deal, A.S. Grove: General relationship for the thermal oxisation of Silicon. Journal of Applied Physics, vol.36(12), December 1965.
 
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)