Редактирование: Двумерное уравнение теплопроводности. Фролова Ксения. 6 курс

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
==Постановка задачи==
 
==Постановка задачи==
Необходимо решить задачу Коши для двумерного уравнения теплопроводности (дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и его изменение во времени.) с использованием средств параллельного программирования на основе MPI.
+
Необходимо решить задачу Коши для двумерного уравнения теплопроводности с использованием средств параллельного программирования на основе MPI.
Задача решается для однородного уравнения теплопроводности (система теплоизолирована) в области [0..L]x[0..L]:<br>
 
<math>\frac{\partial U}{\partial t} - a^2(\frac{\partial^2 U}{\partial x^2}+\frac{\partial^2 U}{\partial y^2}) = 0</math><br>
 
<math>U(t=0) = U_0</math><br>
 
при граничных условиях:<br>
 
<math>
 
  U(x,y,t) =  \begin{cases}T_0, x=0\\
 
    T_1, x!=0
 
\end{cases}</math><br>
 
Используемые величины параметров:<br>
 
<math>L=1, T_0=100, T_1=0</math><br>
 
 
 
==Используемый метод==
 
В вычислительных системах с распределенной памятью процессоры работают независимо друг от друга. Для организации параллельных вычислений в таких условиях необходимо иметь возможность распределять вычислительную нагрузку и организовать информационное взаимодействие (передачу данных) между процессорами. Параллельное программирование служит для создания программ, эффективно использующих вычислительные ресурсы за счет одновременного исполнения кода на нескольких вычислительных узлах. Для создания параллельных приложений используются параллельные языки программирования и специализированные системы поддержки параллельного программирования, такие как MPI и OpenMP. Итак, MPI - это библиотека передачи сообщений, собрание функций на C/C++ (или подпрограмм в Фортране), облегчающих коммуникацию (обмен данными и синхронизацию задач) между процессами параллельной программы с распределенной памятью. Акроним MPI установлен для Message Passing Interface (интерфейс передачи сообщений). Под параллельной программой в рамках MPI понимается множество одновременно выполняемых процессов. Все процессы порождаются один раз, образуя параллельную часть программы. Каждый процесс работает в своем адресном пространстве, никаких общих переменных или данных в MPI нет. Процессы могут выполняться на разных процессорах, но на одном процессоре могут располагаться и несколько процессов (в этом случае их исполнение осуществляется в режиме разделения времени).
 
 
 
==Реализация==
 
При решении поставленной задачи будем использовать замену частных производных в дифференциальных уравнениях их разностными аналогами. Сеточный метод, основанный на замене в дифференциальном уравнении производных конечными разностями, называют '''методом конечных разностей''', а сеточную схему такого метода - конечно-разностной.<br>
 
По аналогии с одномерной задачей для уравнения теплопроводности вводим явную конечно-разностную схему. Область [0..L]x[0..L] разбивается на подобласти согласно количеству процессов в выполняемой параллельной программе. На каждом полученном таким способом интервале процесс интегрирования осуществляется отдельным процессом, при этом в связи с использованием явной схемы соседние процессы должны обмениваться крайними значениями, полученными на предыдущем шаге, для выполнения следующего шага.<br>
 
Программа для решения двумерного уравнения теплопроводности:
 
[[Медиа:2D_Frolova.rar| программа]]
 
 
 
==Результаты==
 
Найдено решение однородного уравнения теплопроводности в двумерной постановке для следующей сетки узлов: 300х300.<br>
 
{| class="wikitable" width="300" floating="center"
 
!Количество процессов [-]
 
!Время рассчета [сек]
 
|-
 
|1
 
|40.2082
 
|-
 
|3
 
|13.7626
 
|-
 
|5
 
|8.38831
 
|-
 
|7
 
|6.56195
 
|-
 
|15
 
|3.08675
 
|-
 
|35
 
|3.90614
 
|}
 
<gallery widths=360px heights=237px perrow = 1>
 
Файл:F_2D.jpg
 
</gallery>
 
Показано, что при увеличении количества процессов уменьшается время расчета. Также из приведенного графика видно, что для малого числа узлов в сетке использование большого количества процессов не обосновано - выигрыш во времени либо незначителен, либо же затраченное время увеличивается.
 
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)