Nosé–Hoover thermostat en
Материал из Department of Theoretical and Applied Mechanics
Содержание
Description of the model
Nosé–Hoover thermostat is used to keep the temperature constant in the system. Equations of motion of the thermostated harmonic oscillator have the form:
where
- is the eigen frequency
- is the initial kinetic temperature of the system
- is the current kinetic temperature of the system
- is the velocity
- is the relaxation time
- - scale for
- - scale of stiffness for
Phase-space trajectory of thermostated harmonic oscillator
The plot shows the trajectory of the thermostated harmonic oscillator in the phase-space. The equations of motion are solved numerically using leap-frog integration scheme. The followng three parameters can be changed by the user:
1) tau =
is the relaxation time2) stiff =
is the stiffness3) scale is a scale parameter for a plot
The last slider allows to choose the number of pre-configured experiment.
Authorship
This stand has been developed by Nikolai Markov.
References
- S. Nosé (1984). "A unified formulation of the constant temperature molecular-dynamics methods". J. Chem. Phys. 81 (1): 511–519.
- W.G. Hoover, (1985). "Canonical dynamics: Equilibrium phase-space distributions". Phys. Rev. A, 31 (3): 1695–1697.
- D.J. Evans, B.L. Holian (1985) The Nose–Hoover thermostat. J. Chem. Phys. 83, 4069.