Решение связанных краевых задач механохимии

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск

МГИСТРСКАЯ РАБОТА
Автор работы: Григорьева Полина
Научный руководитель: Елена Вильчевская

Введение и описание проблемы

Проблема окисления кремния сегодня является одной из важнейших проблем в химии в связи с широким использованием и значимостью технологии кремниевых интегральных схем. Так как объем молекулы диоксида кремния примерно в 2.3 раза больше атома кремния, окисление кремния сопровождается увеличением объема, порождающим внутренние деформации и напряжения. Кроме того, зачастую химическая реакция проходит также и под приложенными внешними механическими нагрузками. Это значит, что задача скорости роста превращенного слоя и распространения фронта химической реакции не может не учитывать механические напряжения.

В классической химии скорость реакции определяется химическим сродством реакции, которое является комбинацией химических потенциалов участвующих в химической реакции компонент: [math]A = - \sum n_k M_k \mu_k,[/math] где [math]\mu_k[/math] - относительный (на единицу массы) химический потенциал k-той компоненты, [math]M_k[/math] - молярная масса, стохиометрический коэффициент [math]n_k[/math] входит в сумму со знаком “+”, если k-тая компонента производится в результате реакции, и со знаком “-”, если расходуется. Химическое сродство широко используется в термодинамической теории химических реакций. В частности, кинетическое уравнение было сформулировано в следующем виде: [math]\omega = k_* c \left\{ {1 - \exp \left( { - \frac{{{A}}}{{RT}}} \right)} \right\}.[/math] Здесь [math]\omega[/math] - скорость химической реакции, [math]k_*[/math] - кинетическая константа (параметр реакции), [math]R = 8.31 \mathrm{JK^{-1}mol^{-1}}[/math] - универсальная газовая постоянная, T - температура, [math]c[/math] - молярная концентрация газовой компоненты реакции.

В случае химических реакций в газах и жидкостях, где напряжения определяются скалярной величиной - давлением, химический потенциал также является скалярной величиной. В случае твердых реагирующих компонент химический потенциал становится тензором. В результате изучения фазового равновесия, было показано, что тензор химического потенциала для твердой компоненты определяется тензором энергии-импульса Эшелби. В работе (1) выражение для тензора химического сродства было получено как результат анализа уравнений баланса массы, импульса и энергии, а также неравенства энтропии, которое было записано для химической реакции между газовой и твердыми компонентами произвольной реологии. А именно, в диссипативном неравенстве для химической реакции было показано, что скорость реакции на ориентированной площадке с нормалью [math]\boldsymbol{n}[/math] сопряжена с нормальной компонентой [math]\boldsymbol{A_{nn}} = \boldsymbol{n \cdot A \cdot n}[/math] тензора [math]\boldsymbol{A}[/math], который и приняли за тензор химического сродства.

Итак, влияние механических нагрузок на рост превращенного слоя и, соответственно, на распространения фронта химической реакции, может быть учтено несколькими способами: через вышеописанную зависимость химического сродства от напряжений, или через зависимость кинетической константы (параметра реакции) от напряжений. Помимо влияния на термодинамику, механические нагрузки также влияют и на диффузию газовой компоненты, и, соответственно, на ее концентрацию, которая входит в выражение для скорости химической реакции. Существуют различные способы представления зависимости диффузии от механических напряжений. В некоторых работах механические нагрузки учитываются через зависимость коэффициента диффузии от напряжений, эта зависимость является эмпирической. В некоторых работах механические нагрузки вводятся дополнительным членом, зависящим от напряжений, в закон Фика. Однако чаще всего при рассмотрении химических реакций под механическими нагрузками зависимость диффузии от напряжений не учитывается, и берется постоянное значение коэффициента диффузии.

В этой работе предпринимается попытка предложить разумную и обоснованную зависимость коэффициента диффузии от механический напряжений, а именно - от деформаций скелета твердого тела, что ведет к модели тензодиффузии. Для различных краевых задач проводится вычисление кинетики продвижения фронта химической реакции в зависимости от приложенных внешних нагрузок с использованием модели тензорного химического сродства. Сравниваются результаты, полученные для предложенного коэффицента диффузии, для принятого эмпирического и для постоянного коэффициента, чтобы выяснить, как диффузия под напряжением влияет на распространение фронта химической реакции, исследовать, какой из коэффициентов диффузии оказывает более сильное влияние на процесс распространения фронта химической реакции, и получить значения внешних нагрузок, при которых зависимостью коэффициента диффузии от напряжений можно пренебречь и считать его постоянным.


Постановка задачи: Модель и уравнения

Теория кинетики химических реакций основана на концепции химических потенциалов и химического сродства, которые являются линейной комбинацией химических потенциалов веществ, принимающих участие в реакции. В классической теории химический потенциал является скаляром. Однако этот подход действителен только для газов и жидкостей, но редко для твердых тел. Если мы хотим исследовать фазовый переход в деформируемых твердых материалах, нам нужно тензорное выражение для химического потенциала. Это также значит, что химическое сродство тоже станет тензором. В связи с проблемой, описанной в предыдущем разделе, мы рассмотрим химическую реакцию между твердой и газовой компонентами:

[math] {n_ - }{B_ - } + {n_*}{B_*} \to {n_ + }{B_ + }, [/math]

где [math]B_ -[/math] и [math]B_ +[/math] относятся к деформируемым твердым компонентам, а [math]B_*[/math] - к газовой компоненте. Мы считаем, что реакция сконцентрирована около фронта реакции, [math]\Gamma [/math], который разделяет области, занятые [math]B_ -[/math] и [math]B_ +[/math]. Реакция проистекает и продолжается вследствие диффузии газовой компоненты [math]B_*[/math] сквозь образующуюся [math]B_ +[/math]. Мы считаем, что весь газ, подходящий к фронту, будет израсходован в химической реакции. Как пример такой реакции, мы можем рассмотреть уравнение, описывающее образование диоксида кремния [math]{Si + O_2} \to {SiO_2}[/math].

Мы считаем, что область, занятая [math]B_ +[/math], является проницаемой для газовой компоненты, которая может свободно диффузировать через твердую компоненту и не вызывать в ней никаких деформаций. Для простоты мы не учитываем эффекты внутреннего трения, влияние реакции на температуру, т.е. мы не реашем задачу теплопроводности, и считаем температуру [math]T[/math] параметром модели.

Было показано, что нормальная компонента тензора химического сродства может быть вычислена согласно следующей формуле (см.(1)):

[math] {A_{nn}} = \frac{{{n_ - }{M_ - }}}{{{\rho _ - }}}\left( {\gamma (T) + {\textstyle{1 \over 2}}{{ \boldsymbol{\sigma }}_{^ - }}:{{ \boldsymbol{\varepsilon }}_{^ - }} - {\textstyle{1 \over 2}}{{ \boldsymbol{\sigma }}_{^ + }}:({{ \boldsymbol{\varepsilon }}_{^ + }} - {{ \boldsymbol{\varepsilon }}_{^{{\rm{ch}}}}}) + {{ \boldsymbol{\sigma }}_{^ + }}:({{ \boldsymbol{\varepsilon }}_{^ + }} - {{ \boldsymbol{\varepsilon }}_{^ - }})} \right) + n_*RT\ln \frac{{c(\Gamma )}}{{{c_*}}}\ [/math]

где [math]{\boldsymbol{\sigma }}_{^ - }^{} = {{\bf{C}}_{^ - }}:{{\boldsymbol{\varepsilon }}_{^ - }}[/math] и [math]{{\boldsymbol{\sigma }}_{^ + }} = {{\boldsymbol{C}}_{^ + }}:({{\boldsymbol{\varepsilon }}_{^ + }} - {{\boldsymbol{\varepsilon }}_{^{{\rm{ch}}}}})[/math] - тензора напряжений Коши, [math]{{\boldsymbol{C}}_{^ \pm }}[/math] являются тензорами жесткости упругих компонент, [math]{{\boldsymbol{\varepsilon }}_{^ \pm }}[/math] - тензора деформации, [math]c(\Gamma )[/math] - концентрация газа на фронте реакции, [math]c_*[/math] - растворимость газовой компоненты в сформированном материале [math]B_ +[/math]. Также мы относим деформации химических превращений к [math]{{\bf{\varepsilon }}_{^{{\rm{ch}}}}}[/math] и считаем, что эти деформации изотропны в объеме, т.е. [math]{{ \boldsymbol{\varepsilon }}_{^{{\rm{ch}}}}} = {\varepsilon _{^{{\rm{ch}}}}}\boldsymbol{I}[/math] , где [math]\boldsymbol{I}[/math] - единичный тензор. Параметр [math]\gamma (T)[/math] отвечает за отсчетные уровни химических энергий. Если температура [math]Т[/math] дана, [math]\gamma (T)[/math] является параметром модели.

Если мы заменим скалярную величину химического сродства нормальной компонентой тензора химического сродства, скорость на элементе поверхности с нормалью [math]\boldsymbol{n}[/math] будет определяться выражением:

[math] {\omega _n} = \omega \left\{ {1 - \exp \left( { - \frac{{{A_{nn}}}}{{RT}}} \right)} \right\}, [/math]

где [math]\omega = {k_*}c[/math] - скорость прямой химической реакции, [math]{k_*}[/math] является кинетической константой скорости химической реакции. Тогда из баланса массы на фронте реакции, [math]n_-M_-\omega=\rho_-V[/math], [math]V[/math] - нормальная компонента скорости распространения химического фронта, следует, что :

[math] V = \frac{{{n_ - }{M_ - }}}{{{\rho _ - }}}\omega \left\{ {1 - \exp \left( { - \frac{{{A_{nn}}}}{{RT}}} \right)} \right\}. [/math]

Фронт реакции продвигается, только если [math]A_{nn}\gt 0[/math]. Тогда из уравнения [math]A_{nn}=0[/math] мы можем найти равновесную концентрацию [math]c_{eq}[/math] на фронте реакции:

[math] \frac{{{n_ - }{M_ - }}}{{{\rho _ - }}}\left( {\gamma (T) + {\textstyle{1 \over 2}}{{\boldsymbol{\sigma }}_{^ - }}:{{\boldsymbol{\varepsilon }}_{^ - }} - {\textstyle{1 \over 2}}{{\boldsymbol{\sigma }}_{^ + }}:({{\boldsymbol{\varepsilon }}_{^ + }} - {{\boldsymbol{\varepsilon }}_{^{ch}}}) + {{\boldsymbol{\sigma }}_{^ + }}:({{\boldsymbol{\varepsilon }}_{^ + }} - {{\boldsymbol{\varepsilon }}_{^ - }})} \right) + {n_*}RT\ln \frac{{{c_{{\rm{eq}}}}}}{{{c_*}}} = 0. [/math]

Вводя эту равновесную концентрацию, мы можем переписать [math]A_{nn}[/math] вблизи химического равновесия как [math]{A_{nn}} = {n_*}RT\left( {\frac{{c(\Gamma )}}{{{c_{{\rm{eq}}}}}} - 1} \right)[/math]. Следовательно, мы можем переписать и формулу для скорости распространения реакции:

[math] V = \frac{{{n_ - }{M_ - }}}{{{\rho _ - }}}{k_*}{n_*}(c(\Gamma ) - {c_{{\rm{eq}}}}). [/math]

Концентрация газовой компоненты на фронте химической реакции [math]c(\Gamma )[/math] может быть найденa из второго закона Фика для диффузии:

[math] \frac{{\partial c}}{{\partial t}} = \nabla \cdot (D\nabla c) [/math]

Мы считаем, что процесс диффузии не зависит от времени. Тогда уравнение принимает вид: [math] \nabla \cdot (D\nabla c)=0. [/math]

Граничными условиями являются: [math] D{\left. {\nabla \cdot c} \right|_\Omega } + \alpha ({c_*} - {\left. c \right|_\Omega }) = 0,\quad D{\left. {\nabla \cdot c} \right|_\Gamma } + {n_*}^2{k_*}(c(\Gamma ) - {c_{{\rm{eq}}}}) = 0. [/math]

Первое условие следует из условия баланса массы на внешней границе тела [math]\Omega[/math], [math]\alpha[/math] - константа скорости растворения молекул газа в новом материале. Второе условие следует из условия баланса массы на фронте реакции [math]\Gamma[/math]. Определение коэффициента диффузии используется согласно. Коэффициент диффузии может быть подсчитан по следующей формуле: [math] D = {D_0}{e^{ - p{V_d}/kT}}, D \lt {D_{{\rm{max}}}} [/math] где за [math]p = - {\textstyle{1 \over 3}}\left( {\sigma _{11}^ + + \sigma _{22}^ + + \sigma _{33}^ + } \right)[/math] обозначено давление на фронте реакции, [math]T[/math] - температура системы, [math]V_d[/math] - объем, занимаемый молекулой, и [math]k[/math] - температурная постоянная Больцмана. Кроме того, величина [math]D_{{\rm{max}}}/D[/math], варьируется от 1.1 до 2 в зависимости от температуры. Итак, задача сводится к следующим пунктам: сначала мы находим [math]c_{{\rm{eq}}}[/math]. Далее, мы находим [math]c(\Gamma )[/math] из задачи диффузии и затем, окончательно, подставляем полученные значения в формулу для нормальной компоненты скорости.

Решение для различных видов механических нагрузок

Результаты

Список литературы

1) Freidin, A.B., Vilchevskaya, E. N., Korolev, I. K.: Stress-assist chemical reactions front propagation in deformable solids. International Journal of Engineering Science, 83 (2014), pp. 57-75.

2) Prigogine, I., Defay, R.: Chemical thermodynamics. London: Longmans, Green, 1954.

3) Thermodynamic theory of structure, stability and fluctuation. Wiley Interscience, London, 1971, pg. 50.

4) Ming-Tzer Lin.: Stress effects and oxidant diffusion in the planar oxidation. (1999). Thesis and Dissertation, Lehigh University. Paper 594

5) B.E.Deal, A.S. Grove: General relationship for the thermal oxisation of Silicon. Journal of Applied Physics, vol.36(12), December 1965.