Моделирование удара хлыста

Материал из Department of Theoretical and Applied Mechanics
Версия от 20:31, 14 января 2024; 31.134.188.12 (обсуждение) (Математическая модель)

Перейти к: навигация, поиск

Курсовой проект по Механике дискретных сред

Исполнитель: Еремеева Наталья

Группа: 5030103/00101

Семестр: осень 2023


Постановка задачи

Необходимо смоделировать удар, закрепленного с левой стороны, гибкого хлыста в двумерной постановке. Хлыст состоит из n частиц и n-1 соединенных пружин, имеющих одинаковую жесткость.

Математическая модель

Начальные условия: [math] \underline{r}_i(0)=\underline{r}_i^0,~\underline{v}_i(0)=v_i^0~~~i=1,\ldots,n [/math]

Запишем уравнение движения для каждой из материальных точек:

[math] m\underline{\ddot{r}}_i(t)=\underline{F}_{i-1}(t)+\underline{F}_{i+1}+m_ig\underline{j}, \\ [/math] где [math] \underline{F}_{i-1}, \underline{F}_{i+1}\\ [/math] - силы упругости действующие на [math]i[/math]-ую частицу со стороны [math]i-1[/math] и [math]i+1[/math] соответственно; [math] m_ig\underline{j}\\ [/math] - сила тяжести, действующая на [math]i[/math]-ую частицу;

Сила упругости для пружины, соединяющей [math]i[/math]-ую и [math](i+1)[/math]-ую частицы:

[math] \underline{F}_{R}= -(||\underline{r}_ {i+1}-\underline{r}_{i}|| - \frac{l}{n})c \frac{(\underline{r}_{i+1}-\underline{r}_{i})}{||\underline{r}_{i+1}-\underline{r}_{i}||} [/math], где [math]c[/math] - коэффициент жесткости пружины.

Будем работать в декартовой системе координат: [math] \underline{r} = x\underline{i} + y\underline{j} \\ \underline{\dot{r}} = \upsilon\underline{i} + u\underline{j} \\ [/math]

Для хорошей сходимости задач механики дискретных сред в задачах необходимо привести физические величины к безразмерным: [math] \widetilde{x}_i = \frac{x_i}{l}; \widetilde{y}_i = \frac{y_i}{l}; \widetilde{t}_i = \frac{t_i}{\tau}; \widetilde{\upsilon}_i = \frac{d\widetilde{x}_i}{d\widetilde{t}_i} = \frac{dx_i}{dt_i} \frac{l}{\tau};\widetilde{u}_i = \frac{d\widetilde{y}_i}{d\widetilde{t}_i} = \frac{dy_i}{dt_i} \frac{l}{\tau}; [/math]

Интегрирование уравнений движения осуществляется при помощи метода Верле.