Моделирование удара шарика об стенку Эссам

Материал из Department of Theoretical and Applied Mechanics
Версия от 10:18, 20 января 2022; 5.18.199.216 (обсуждение) (Математическая модель)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Курсовой проект по Механике дискретных сред

Исполнитель: Эссам Жоан

Группа: 5030103/80101

Семестр: осень 2021

Постановка задачи[править]

Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.

Математическая модель[править]

Уравнение движения для каждой из материальных точек записывается следующим образом:

[math] m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2}+\underline{P}+\underline{F}_{Wall}\\ \underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=\underline{v}_i^0~~~i=1,\ldots,n [/math]


где [math] \underline{F}_{R_1}, \underline{F}_{R_2}\\ [/math] - силы упругости действующие на [math]i[/math]-ую частицу со стороны [math]i-1[/math] и [math]i+1[/math] соответственно;

[math] \underline{P} [/math] - давление создаваемое газом;

[math] \underline{F}_{Wall}\\ [/math] - сила взаимодействия между воздушным шаром и стеной;

Сила упругости, действующая на частицу 1 со стороны частицы 2, вычисляется по следующей формуле:

[math] \underline{F}_{R}= -(||\underline{R}_1-\underline{R}_2|| - l_0)k_R\frac{(\underline{R}_2-\underline{R}_1)}{||\underline{R}_2-\underline{R}_1||} [/math], где [math]l_0[/math] - начальная длина пружины соединяющей частицу 1 и 2 и [math]k_R[/math] - коэффициент жесткости пружины.

Давление:

[math] \underline{P}=P \underline{n} [/math], где [math] P [/math] - модуль давления, [math] \underline{n}[/math] - нормаль к пружине, направленная наружу.

Взаимодействие шара со стеной:

[math] \underline{F}_{Wall}=\frac{12D}{a}[(\frac{a}{r})^{13}-(\frac{a}{r})^7] [/math]

Интегрирование уравнений движения осуществляется при помощи метода Верле.

визуализация 2D моделирования[править]

исходный код можно посмотреть здесь: https://github.com/johann314/DM