"Численные методы интегрирования уравнений движения для одномерной линейной цепочки и частицы в потенциальной яме Леннарда-Джонса"
Курсовой проект по Механике дискретных сред
Исполнитель: Троцкая Валерия
Группа: 3630103/60101
Семестр: осенний семестр 2019-2020 учебного года
Постановка задачи:
- Сравнить различные методы интегрирования уравнений движения (Верле, Рунге-Кутта 4 порядка). Реализовать фиксированные, свободные и периодические условия</div>
- Численно определить скорость диссоциации частицы в потенциальной яме Леннарда-Джонса
Теоретическая сводка:
- Одномерная линейная цепочка
Рассмотрим модель колебаний одинаковых атомов массой m, находящихся в одномерной цепочке. Пусть в этой цепочке находится N атомов, связанных между собой квазиупругой силой с коэффициентом упругости k.
б. Метод Рунге-Кутта 4 порядка
Для каждого из методов реализуются 3 вида граничных условий:# Фиксированные граничные условия
- Свободные граничные условия
- Периодические граничные условия
- Частица в потенциальной яме Леннарда-Джонса
Уравнение движения частицы в потенциальной яме Леннарда-Джонса:
Скоростью диссоциации будем называть скорость, которую необходимо сообщить частице, чтобы она улетела на бесконечность.
Решение:
Вывод:# Были реализованы различные методы интегрирования уравнения движения одномерной линейной цепочки. Заметим, что метод Верле является симплектическим и сохраняет энергию, в то время как метод Рунге-Кутта энергию не сохраняет.
- Была численно найдена скорость диссоциации частицы в потенциальной яме Леннарда-Джонса, которая с заданной точностью совпала с теоретическим значением.