Перераспределение энергии между степенями свободы в нелинейной двухатомной цепочке
Курсовой проект по Механике дискретных сред
Исполнитель: Белоусова Екатерина
Группа: 43604/1
Семестр: осень 2018
Постановка задачи
Рассмотреть перераспределение энергии между степенями свободы в нелинейной двухатомной цепочке, построить графики зависимости энергии частиц от времени.
Решение
Рассмотрим модель колебаний одномерной двухатомной цепочки массами m1 и m2. Пусть в этой цепочке находится N атомов. Обозначим смещение n-го атома un, а атома, отстоящего от него на p узлов, – un+p. Примем в качестве положительных смещения атомов вправо от положения равновесия, а отрицательных – влево.
Каждый атом смещается только вдоль цепочки, что следует из требования одномерности модели.
Пусть атомы связаны между собой упругой силой F с коэффициентом упругости с. Найдем уравнение движения n-го и n+1-го атома в цепи. В равновесном положении силы, действующие на атомы, равны нулю. При произвольных смещениях на каждый n-й атом будет действовать сила со стороны соседних атомов. Суммарную силу, действующую на n-й атом со стороны соседних атомов, можно представить в виде:
Запишем систему уравнений движения атомов массой и :
В качестве начальных условий заданы случайные начальные скорости таким образом, что средняя скорость всех частиц равна 0. Перемещения всех частиц в начальный момент времени равны нулю. Также заданы периодические граничные условия на перемещения.
Система решалась в Matlab методом конечных разностей.
В задаче на каждом шаге по времени находилась кинетическая энергия всей системы, после чего был построен график зависимости энергии системы от времени.
Для частиц одинаковой массы был получен следующий график:
Если рассматривать частицы разной массы, то график зависимости будет иметь следующий вид (
и ):Рассмотрим нелинейную постановку задачи. В выражении для силы будет присутствовать слагаемое третьего порядка:
Решается данная задача в нелинейной постановке аналогичным образом. если мы возьмем нелинейный коэффициент b равным нулю, получим решение, соответствующее предыдущей задаче. Начнем постепенно увеличивать коэффициент b и заметим, что система начнет затухать быстрее.
При одинаковой массе частиц:
b=0.01
b=0.1
b=0.5
b=1
Разные массы частиц (
b=0.01
b=0.1
b=0.5
b=1