Мещерский задача 48.29

Материал из Department of Theoretical and Applied Mechanics
Версия от 20:51, 19 декабря 2017; Серов Александр (обсуждение | вклад) (Новая страница: «'''''Задача:''''' С помощью языка программирования JavaScript сделать реализацию задачи из задач…»)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Задача: С помощью языка программирования JavaScript сделать реализацию задачи из задачника Мещерского.

Исполнитель: Ефименко Александра

Группа: 23631/2

Семестр: осень 2017

Реализация[править]


Условие[править]

На гладкой горизонтальной плоскости помещена треугольная призма ABC массы m, которая может скользить без трения по этой плоскости; по грани призмы AB катится без скольжения однородный круглый цилиндр массы m1. Определить ускорение призмы.

Решение задачи[править]

Используем уравнение Лагранжа 2-го рода:

[math]\frac{d}{dt}\left(\frac{\partial L}{\partial\dot q_i}\right) - \frac{\partial L}{\partial q_i} = Q , (i = 1,2)[/math] , где

L = T - П - функция Лагранжа
T - кинетическая энергия системы
П - потенциальная энергия системы
q - независимые обобщенные координаты
Q - непотенциальная обобщённая сила

В данной задаче в качестве обобщенных координат примем изменяющиеся координату призмы [math]x[/math] и координату цилиндра [math]c[/math] по оси, направленной вдоль наклонной плоскости [math]\varphi [/math]. Представим:

[math]T = T_1+T_2[/math], где [math]T_1[/math] - кинетическая энергия катка массы [math]m_1[/math], а [math]Т_2[/math] - треугольной призмы массы [math]m[/math].

Треугольная призма откатывается вдоль оси [math]x[/math], следовательно:

[math]T_2 = \frac{1}{2}m\dot x^{2}[/math]

Движение цилиндра массы [math]m_1[/math] плоское.

[math]T_1 = \frac{1}{2}m_1V_с^{2}+\frac{1}{4}m_1r^{2} ω^{2}[/math]

Где [math]V_с[/math] - абсолютная скорость центра масс цилиндра массой [math]m_1[/math]:

[math]V_c= \dot S_c \cos\alpha - \dot x[/math]

[math] ω= \frac{1}{r}\dot S_c[/math]

Здесь [math]\dot S_c [/math] - относительная скорость

[math]T = T_1+T_2= \frac{1}{2}m\dot x^{2} +\frac{1}{2}m_1(\dot S_c \cos^{2}\alpha - \dot x)^{2}+\frac{1}{4}m_1\dot S_c^{2}[/math]

Получаем два равенства, соответствующие двум уравнениям Лагранжа:

[math]m\ddot x -m_1(\ddot S_c \cos^{2}\alpha - \ddot x)=m_1g\cos\alpha\sin\alpha[/math]

[math]m_1(\ddot S_c \cos^{2}\alpha - \ddot x)\cos^{2}\alpha+\frac{m_1}{2}\ddot S_c=m_1g\sin\alpha [/math]

Откуда получаем:

[math]\ddot x=a=-g\frac{m_1\sin 2\alpha}{3(m+m_1)-2m_1\cos^{2}\alpha}[/math]