Моделирование динамической потери устойчивости стержней

Материал из Department of Theoretical and Applied Mechanics
Версия от 10:52, 21 июня 2016; Данил (обсуждение | вклад) (Новая страница: «'''МАГИСТЕРСКАЯ РАБОТА'''<br> ''Автор работы'': Краморов Данил<br> ''Научный р…»)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

МАГИСТЕРСКАЯ РАБОТА
Автор работы: Краморов Данил
Научный руководитель: к. ф-м. н. В. А. Кузькин

Введение и мотивация работы

В настоящее время в мировой практике широкое распространение приобрели стержневые конструкции из оцинкованных тонкостенных холодногнутых профилей. В отличие от стальных конструкций, где установлены геометрические соотношения параметров сечения их стержневых элементов, заведомо обеспечивающие местную устойчивость, в элементах ЛСТК потеря местной устойчивости допускается на ранних стадиях нагружения. Поэтому в настоящее время одним из актуальных направлений исследования является изучение влияния потери местной устойчивости стержневых тонкостенных холодногнутых профилей.

Решаются следующие задачи:

  • создание наиболее простой конечно-элементной модели стержня
  • исследование статической потери устойчивости тонкостенного стержня
  • исследование динамической потери устойчивости сплошного и тонкостенного стержней

Тонкостенный стержень — стержень, у которого все три основных размера (наибольший и наименьший размеры поперечного сечения и длина) являются величинами различного порядка. В отличие от обычных (сплошных) стержней, сечения тонкостенного стержня при деформации не остаются плоскими (явление депланации), что исключает возможность использования при расчёте гипотезы плоских сечений [1]. Благодаря лёгкости и экономичности, тонкостенные конструкции получили широкое распространение в строительстве. Относительно легкий вес также не ограничивает инженеров и производителей в выборе формы поперечного сечения профилей [2]. Основная часть расчетов производилась методом конечных элементов (МКЭ) в программе ABAQUS [3]. Для твердотельного построения статической потери устойчивости был выбран тип элементов 3D stress с 8 степенями свободы, для оболочечных – Shell с 4 степенями свободы. В динамическом случае – 3D wire shape с заданным сечением. Во всех постановках геометрический порядок сетки – линейный. При большом количестве элементов он дает точность близкую к квадратичному порядку, а вот скорость расчета становится выше. Материал конструкции – сталь (E=210 ГПа, ν =0.3) в упругой постановке.

Статическая форма потери устойчивости

Исследования статической потери устойчивости проводились с использованием оболочечной модели. С точки зрения МКЭ разница между твердотельной и оболочечной моделью в следующем:

  • в оболочечной модели не требуется разбиение сетки по толщине стержня
  • в оболочечном построении изменение толщины происходит почти мгновенно заменой данного параметра, тогда как в твердотельном приходится перестраивать весь эскиз модели

Максимальная разница между оболочеченой и твердотельной постановками – 5% в пользу оболочечной модели – позволяет использовать оболочечную модель. Отсутствие скругления же показывает разницу 6% в пользу твердотельной модели, что в комбинации с оболочечной постановкой позволяет использовать упрощенную модель практически без потери точности.

Объединение стержней в составное сечение значительно повышает несущую способность стержня, позволяя использовать его в местах подверженных максимальной нагрузке (например, в колоннах). В рамках бакалаврской было доказано, что оптимальным способом объединения является объединение планками. Был получен понижающий коэффициент, позволяющий учитывать в расчете податливость саморезов. Однако были найдены ошибки в моделировании, при пересчете уже в рамках магистерской данный коэффициент увеличился с 0.85 до 0.93. То есть идеально жесткое крепление планок к профилю уменьшает точность расчета несущей способности примерно на 7%.

Тонкостенный профиль может иметь практически любое сечение, в том числе потому что форма сечения создается загибом тонкого стального листа. Но при многократном использовании станка может возникнуть дефект. Нормативно дефект производства в 1° является допустимым. Было доказано:

  • отклонение в 5° при любой постановке дает максимальную погрешность в 5%
  • наибольшее влияние оказывает отклонение стенки стержня от вертикали
  • отклонение отгибов от прямого угла не создает существенной ошибки

Кроме того для дальнейшего упрощения в рамках данного исследования было проведено сравнение оболочечной и балочной постановки. Разница между постановками оказалась несущественной, что позволяет в дальнейшем использовать именно балочное построение.

Динамическая форма потери устойчивости

В рамках работы к решению задачи применялись следующие численные методы:

  • метод Рунге-Кутты 4-го порядка;
  • метод Адамса по схеме предиктор-корректор.

Выбор устойчивого численного метода, дающего точный результат за минимальное время является важным для применения модифицированной постановки к трехмерной задаче.

Метод Рунге-Кутты 4 порядка

Одним из наиболее распространенных методов Рунге-Кутты является метод 4 порядка точности. Для задачи Коши

[math] y^\prime = f(x,y), \ \ \ \ \ y(x_0) = y_0 [/math]

приближенное решение [math] y_{n+1} [/math] может быть найдено по следующей формуле:

[math] y_{n+1} = y_n + \frac{h}{6}\left(k_1 + k_2 + k_3 + k_4\right), [/math]

где

[math] k_1 =f(x_n,y_n), [/math]
[math]k_2=f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right),[/math]
[math]k_3=f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_2\right),[/math]
[math]k_4=f\left(x_n + h, y_n + hk_3\right).[/math]

Для использования этого метода необходимо было найти максимальный шаг по времени, при котором сохраняется устойчивость метода. В дальнейшем шаг по времени может быть увеличен вместе с увеличением размера сетки, т.к. в условие устойчивости входит отношение [math] \Delta t / \Delta x^2 [/math].

Метод Адамса по схеме предиктор-корректор

Методы Адамса относятся к категории многошаговых конечно-разностных методов, т.е. для вычисления нового значения функции используют значения, вычисленные на предыдущих шагах. Существует две группы методов Адамса: явные методы Адамса (методы Адамса-Башфорта) и неявные (методы Адамса-Мультона). Неявная схема интегрирования предполагает итерационное решение системы. Итерационный процесс требует начального приближения решения. Его можно получить, использовав явную схему. Схема предиктор-корректор состоит из явной схемы, которую называют предиктором, и неявной, которую называют корректором. В рамках данной работы в качестве предиктора использовался метод Адамса-Башфорта 4-го порядка

[math] y_{n+1} = y_n + \frac{h}{24} \left(55f(t_{n}, y_n) - 59f(t_{n-1}, y_{n-1}) + 37f(t_{n-2}, y_{n-2}) - 9f(t_{n-3}, y_{n-3})\right), [/math]

а в качестве корректора --- метод Адмаса-Мультона 5-го порядка

[math] y_{n+1} = y_n + \frac{h}{720} (251f(t_{n+1}, y_{n+1}) + 646f(t_{n}, y_{n}) - 264f(t_{n-1}, y_{n-1}) + 106f(t_{n-2}, y_{n-2}) - 19f(t_{n-3}, y_{n-3}). [/math]

Использование такого метода решения системы ОДУ имеет то достоинство, что, будучи неявным, он более устойчивый и позволяет выбрать больший шаг интегрирования по времени.

Численные результаты и их обсуждение

В ходе моделирования основное внимание уделялось двум величинам: раскрытию трещины в источнике и ее полудлине. Контроль точности осуществлялся с использованием раскрытия и полудлины трещины, полученных из автомодельного решения. Это позволяло контролировать точность численного решения в последующие моменты времени путем сравнения результатов с автомодельным решением. Моделирование проводилось с момента времени [math] t_0 = 1[/math] до [math] t_{fin} = 100 [/math].


C целью выбрать наиболее эффективный метод проводилось сравнение использованных численных методов по устойчивости, точности и требуемым вычислительным затратам.

Расчеты проводились с разными сетками [math] M=21\ldots141[/math]. Проведенные численные эксперименты показали, что для устойчивости метода Рунге-Кутты необходимо выбирать меньший шаг интегрирования по времени, чем для метода Адамса по схеме предиктор-корректор.

Результаты экспериментов показали, что оба метода дают результат с одинаковой точностью независимо от размера сетки. Для примера на рисунках
Результаты моделирования в момент времени [math]t_{fin}=100[/math] при [math]N=21[/math]
Результаты моделирования в момент времени [math]t_{fin}=100[/math] при [math]N=81[/math]
представлены результаты моделирования до времени [math] t_{fin} = 100 [/math] с использованием сетки с [math] M+1 = 21 [/math] и [math] M+1 = 81 [/math] узлами. Точки графика с равной нулю ординатой отвечают полудлине трещины, с равной нулю абсциссой - раскрытию в источнике.

Для сравнения вычислительных затрат и возможности их снижения в качестве исходной величины бралось время, которое необходимо для решения задачи на сетке с [math] M+1 = 41 [/math] узлом. Метод Рунге-Кутты без ускорения (т.е. без увеличения шага по времени вместе с увеличением масштаба сетки) требует одного часа для проведения моделирования до времени [math] t_{fin} = 100 [/math] в среде Matlab на ноутбуке Lenovo ideapad z710 с процессором Intel i5. Использование возможности увеличивать шаг по времени снижает это время до [math] 10 [/math] минут. Применение к решению задачи метода Адамса позволяет снизить время вычислений до [math] 5 [/math] минут. Существенно большие затраты времени при интегрировании методом Рунге-Кутты объясняются тем, что для его устойчивости требуется маленький шаг интегрирования по времени.

На рисунке
Погрешность решения в момент времени [math] t_{fin} = 100 [/math] в зависимости от числа узлов.
изображена зависимость погрешности решения от количества узлов сетки. Хорошо видно, что погрешность убывает с увеличением числа узлов, используемых для моделирования. Стоит отметить, что в сравнении с результатами работы А. М. Линьков 2016 погрешность заметно выросла (в работе А. М. Линьков 2016 погрешность вычисления полудлины не превышала [math] 1\% [/math] даже для сетки с [math] M + 1 = 21 [/math]). Возрастание погрешности объясняется тем, что в работе А. М. Линьков 2016 задача решалась в нормированных координатах. При использовании таких координат частная производная от раскрытия по времени равна нулю у вершины трещины ([math] \partial w / \partial t = 0 [/math]), тогда как в ненормированных координатах производная сингулярна: она имеет порядок сингулярности [math]O(\left( x_{\ast}-x\right) ^{\alpha -1})[/math], причем [math] \alpha \lt 1[/math].

Было проведено исследование зависимости решения от индекса поведения жидкости [math] n [/math].

Величина обратная индексу поведения жидкости входит в уравнения Пуазейля и скорости как показатель степени, поэтому при стремлении [math] n [/math] к нулю, можно ожидать снижения точности решения. Погрешность вычислений для разных [math] n [/math] представлена на рисунке
Точность решения в момент времени [math] t_{fin} = 100 [/math] в зависимости от индекса поведения жидкости [math] n [/math]
. Из графика, представленного на рисунке, видно, что погрешность раскрытия в источнике существенно зависит от индекса поведения жидкости, а при его стремлении к нулю погрешность увеличивается в несколько раз. Эту погрешность можно устранить, перестроив алгоритм. Однако, это лежит в стороне от главной темы этой работы. Кроме того, в практике гидроразрыва обычно применяются жидкости с индексом поведения, превышающим [math] 0.5 [/math] , т.е. из диапазона, в котором метод обеспечивает достаточную точность.

Выводы

  1. Установлено, что при использовании конечных разностей и квадратурных формул, учитывающих специфику задачи, задача ХГД может быть решена в глобальных координатах без обращения гиперсингулярного оператора.
  2. Разработанный подход, использующий удвоение размера сетки при достижении фронтом заранее заданной границы, позволяет не пересчитывать матрицу дискретизированного упругого оператора на шагах интегрирования по времени. Новые коэффициенты влияния получаются из элементов матрицы делением на масштабный фактор.
  3. В отличии от большинства предшествующих работ, метод не требует обращения матриц. В нем используются только скалярные произведения. Это благоприятствует объединению его с быстрым методом мультиполей.
  4. Полученная динамическая система можеть быть эффективно решена с помощью методов решения задачи Коши для ОДУ, например, методом Рунге-Кутты, Адамса и др.
  5. Установлено, что в рассматриваемой задаче метод Адамса по схеме предиктор-корректор имеет преимущество, поскольку, будучи более устойчивым, требует меньших вычислительных затрат при сохранении точности получаемого решения.
  6. В случае, когда не привлекаются специальные асимптотические методы, отвечающие близкому к нулю индексу поведения жидкости, точность решения падает. Например, для сетки с [math]M+1=41 [/math] узлом погрешность вычислений раскрытия в источнике и полудлины трещины составляет соответственно:
    • [math] 7.7\% [/math] и [math] 4.8\% [/math] для индекса поведения жидкости [math] n=0.3 [/math],
    • [math] 10.9\% [/math] и [math] 5.7\% [/math] для индекса поведения жидкости [math] n=0.1 [/math]. Тем не менее в практически важном интервале $ 0.5 < n < 1 $ падение точности не происходит.
  7. Разработанный метод, будучи избавленным от упрощений, доступных только в одномерных задачах, допускает распространение на трехмерную задачу. Его использование для решения задачи ХГД на прямоугольной сетке дало результаты с точностью не меньшей, чем в данной работе.

Направление дальнейших исследований --- распространение метода на трехмерную задачу и применение более эффективных, чем метод Адамса, методов численного интегрирования, например, формулы дифференцирования назад.

Список литературы

  • Adachi J. et al. Computer simulation of hydraulic fractures //International Journal of Rock Mechanics and Mining Sciences. – 2007. – Т. 44. – №. 5. – С. 739-757.
  • Geertsma, J., F. De Klerk. A rapid method of predicting width and extent of hydraulically induced fractures //Journal of Petroleum Technology. – 1969. – Т. 21. – №. 12. – С. 1,571-1,581.
  • Khristianovic S., Zheltov Y. Formation of vertical fractures by means of highly viscous fluids //Proc. 4th world petroleum congress, Rome. – 1955. – Т. 2. – С. 579-586.
  • Linkov A. M. Speed equation and its application for solving ill-posed problems of hydraulic fracturing //Doklady Physics. – MAIK Nauka/Interperiodica, 2011. – Т. 56. – №. 8. – С. 436-438.
  • Linkov A. M. On efficient simulation of hydraulic fracturing in terms of particle velocity //International Journal of Engineering Science. – 2012. – Т. 52. – С. 77-88.
  • Linkov A. M., Mishuris G. Modified formulation, $ \varepsilon $-regularization and the efficient solution of hydraulic fracture problems //ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. – International Society for Rock Mechanics, 2013.
  • Linkov A. M. The particle velocity, speed equation and universal asymptotics for the efficient modelling of hydraulic fractures //Journal of Applied Mathematics and Mechanics. – 2015. – Т. 79. – №. 1. – С. 54-63.
  • Pierce A. P., Siebrits E. A dual multigrid preconditioner for efficient solution of hydraulically driven fracture problem //International Journal of Numerical Methods and Engineering. – 2005. – Т. 65. – С. 1797-1823.
  • Peirce A., Detournay E. An implicit level set method for modeling hydraulically driven fractures //Computer Methods in Applied Mechanics and Engineering. – 2008. – Т. 197. – №. 33. – С. 2858-2885.
  • Peirce A. Modeling multi-scale processes in hydraulic fracture propagation using the implicit level set algorithm //Computer Methods in Applied Mechanics and Engineering. – 2015. – Т. 283. – *Rice J. R. Mathematical analysis in the mechanics of fracture //Fracture: an advanced treatise. – 1968. – Т. 2. – С. 191-311.
  • Settari A., Cleary M. P. Development and testing of a pseudo-three-dimensional model of hydraulic fracture geometry //SPE Production Engineering. – 1986. – Т. 1. – №. 06. – С. 449-466.
  • Mack M. G., Warpinski N. R. Mechanics of hydraulic fracturing //Reservoir stimulation. – 2000. – С. 6-1.
  • Алексеенко О. П. и др. Двумерная пошаговая модель распространения трещины гидроразрыва //Вестник НГУ. Серия: Математика, механика, информатика. – 2011. – Т. 11. – №. 3. – С. 36-59.
  • Линьков А. М. Решение осесимметричной задачи о гидроразрыве для утончающихся жидкостей // ПММ. -2016. - Т. 80. - №. 2. - С. 207-217.
  • Линьков А. М. Численное решение плоской задачи о гидроразрыве в модифицированной постановке при произвольных начальных условиях //Физико-технические проблемы разработки полезных ископаемых. -2016. -№. 2.
  • Самарский А. А., Гулин А. В. Численные методы. – Москва: Наука, 1989.
  • http://vseonefti.ru/upstream/frac.html