Одномерное уравнение теплопроводности. Буй Ван Шань. 6 курс

Материал из Department of Theoretical and Applied Mechanics
Версия от 19:40, 11 декабря 2015; Buivansanh (обсуждение | вклад) (Применение технологии MPI)

Перейти к: навигация, поиск

Постановка задачи

Пример численного решения уравнения теплопроводности. Цветом и высотой поверхности передана температура данной точки.

Решается однородное уравнение теплопроводности на промежутке [math]\left[a\ldots b\right][/math]

[math]\frac{\partial U\left(x,t\right)}{\partial t} - k^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2} = f(x,t)[/math]

С граничными условиями

[math] \begin{cases} U(a,t) = M1(t) \\ U(b,t) = M2(t) \end{cases}[/math]

и начальным распределением температуры

[math]U(x,0) = U0(x)[/math]
  • Где :[math]f(x,t), U0(x), M1(t), M2(t)[/math] - Известные функции

Реализация

Конечно-разностная схема

Явная разностная схема

Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде

[math]\frac{\partial U\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2}[/math]

Введем равномерную сетку [math]0 \lt x_i \lt L[/math] с шагом разбиения [math]Δx[/math]. Шаг по времени назовем [math]Δt[/math] Построим явную конечно-разностную схему:

[math]\frac{U_i^{n+1}-U_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(U_{i+1}^{n} - 2U_{i}^{n}+U_{i-1}^{n}\right)[/math]

Где, [math]U_i[/math] — значение температуры в [math]i[/math]-ом узле.

  • Условие сходимости явной схемы:[math]dt\lt dx^2/2[/math], где dt - шаг по времени, dx - шаг по координате

Применение технологии MPI

Разветвление для уравнения теплопроводности осуществляется путем разбиением отрезка интегрирования на некоторые интервалы. На каждом интервале, процесс интегрирования осуществляется отдельным процессом, при этом в связи с использованием явной схемы, соседние процессы должны обменивать крайними значениями, получены на предыдущем шаге, для выполнения следующего шага.

Схема передачи данных между процессами
Первый процесс обменивается данными только с вторым процессом
Последний процесс обменивается данными только с предпоследним процессом
Все средние процессы обмениваются с процессами слево, и справо
  • Начальные и краиние значения на каждом шаге вычисляются по начальным и граничным условиям.

Данные для расчета

[math] \begin{cases} a=0;b=1\\ M1(t)=6t+0.887\\ M2(t)=0.0907\\ U0(x)=cos(x+0.48)\\ f(x,t)=0\\ k=1 \end{cases}[/math]

Результаты

  • Решение
    • 2 процесса
Решение при запуске 2-х процессов
  • 4 процесса
Решение при запуске 4-х процессов
  • Погрешность вычисления
  • Зависимость времени расчета от количества процессов при постоянных шагах вычисления: dx = 0.001; dt = 0.000001
Зависимость времени расчета от кол. процессов
Количество процессов Время рассчета (сек)
2 96.58
4 49.4
8 28.66
10 23.63
20 12.89
30 9.27
40 7.52

Для малого числа узлов в сетке использовать многопроцессорные вычисления не выгодно: время работы программы неуменьшается. Заметим что при увеличении количества процессов, скорость расчета параллельно повысилась

Ссылки для скачивания

Скачать реализацию 1d Файл:HeatEquation.rar
Скачать реализацию 2d Файл:MPI2x.rar

Полезные ссылки

Уравнение теплопроводности