Одномерное уравнение теплопроводности. Степанов Алексей. 6 курс 2015-2016

Материал из Department of Theoretical and Applied Mechanics
Версия от 13:26, 27 ноября 2015; 192.168.0.2 (обсуждение) (Выводы)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Цель[править]

Реализовать численное решение одномерно уравнения теплопроводности.

Постановка задачи[править]

Решается однородное уравнение теплопроводности на промежутке [math]\left[0\ldots L\right][/math]

[math]\frac{\partial T\left(x,t\right)}{\partial t} - a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2} = 0[/math]

С граничными условиями

[math] \begin{cases} T(0,t) = T_0 \\ T(L,t) = T_1 \end{cases}[/math]

И начальным распределением температуры

[math]T(x,t) = T_s[/math]

Конечно-разностная схема[править]

Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде

[math]\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}[/math]

Введем равномерную сетку [math]0 \lt x_i \lt L[/math] с шагом разбиения [math]Δx[/math]. Шаг по времени назовем [math]Δt[/math] Построим явную конечно-разностную схему:

[math]\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)[/math]

Где, [math]T_i[/math] — значение температуры в [math]i[/math]-ом узле.

Компьютерная реализация[править]

Компьютерную реализацию программы можно найти в Файл:SAD HeatConductivity.7z

Результаты[править]

Количество процессов Время рассчета (сек)
1 184.2
2 91.6
5 39.4
10 19.2
20 9.9
30 8.1
40 7.5

Выводы[править]

  • Для малого числа узлов в сетке использовать многопроцессорные вычисления не выгодно: время работы программы увеличивается.
  • При увеличении числа процессоров относительный выигрыш во времени уменьшается.

Полезные ссылки[править]

Уравнение теплопроводности