Одномерное уравнение теплопроводности. Степанов Алексей. 6 курс 2015-2016

Материал из Department of Theoretical and Applied Mechanics
Версия от 13:02, 20 ноября 2015; 109.205.249.212 (обсуждение) (Конечно-разностная схема)

Перейти к: навигация, поиск

Цель

Реализовать численное решение одномерно уравнения теплопроводности.

Постановка задачи

Решается однородное уравнение теплопроводности на промежутке [math]\left[0\ldots L\right][/math]

[math]\frac{\partial T\left(x,t\right)}{\partial t} - a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2} = 0[/math]

С граничными условиями

[math] \begin{cases} T(0,t) = T_0 \\ T(L,t) = T_1 \end{cases}[/math]

И начальным распределением температуры

[math]T(x,t) = T_s[/math]

Конечно-разностная схема

Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде

[math]\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}[/math]

Введем равномерную сетку [math]0 \lt x_i \lt L[/math] с шагом разбиения [math]Δx[/math]. Шаг по времени назовем [math]Δt[/math] Построим явную конечно-разностную схему:

[math]\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)[/math]

Где, [math]T_i[/math] — значение температуры в [math]i[/math]-ом узле.

Полезные ссылки

Уравнение теплопроводности