Эллиптический маятник

Материал из Department of Theoretical and Applied Mechanics
Версия от 00:22, 27 мая 2015; Павел (обсуждение | вклад) (Решение частного случая)

Перейти к: навигация, поиск

Задача: С помощью языка программирования JavaScript смоделировать эллиптический маятник.

Maytnic.png

Решение

Используемые библиотеки

  • cloudflare.js
  • dat.gui.js
  • googleapis.js
  • orbitControls.js
  • stats.js
  • trackballControls.js

Возможности программы

  • задание скорости раскачивания маятника
  • изменение масс шара и ползуна
  • изменения силы тяжести
  • детальное рассмотрение работы с удобного ракурса
  • получение рисунка траектории маятника

Решение частного случая

Условия задачи:

Картинка к задаче.

Составить уравнения движения эллиптического маятника, состоящего из ползуна M1 массы m1, скользящего без трения по горизонтальной плоскости, и шарика M2 массы m2, соединенного с ползуном стержнем AB длины l. Стержень может вращаться вокруг оси A, связанной с ползуном и перпендикулярной плоскости рисунка. Массой стержня пренебречь.

Решение:

[math]\frac{d}{dt}\left(\frac{\partial L}{\partial\dot q_i}\right) - \frac{\partial L}{\partial q_i} = 0 [/math]

где [math]L[/math] - функция Лагранжа

[math]L = T-\Pi [/math]

[math]T[/math] - кинетическая энергия системы, [math]\Pi[/math] - потенциальная энергия системы [math]q_1 = y[/math] , [math]q_2 = \varphi [/math]

[math]T = T_1 + T_2[/math], где [math] T_1[/math] - кинетическая энергия ползуна, [math]T_1[/math] - кинетическая энергия шара

[math]T_1 = \frac{1}{2}\ m_1\dot y^{2}[/math]

[math]T_2 = \frac{1}{2}\ m_2\ V_2 ^{2}[/math]

[math]V_2 = V_e + V_r[/math] , [math]V_e = \dot \varphi \ l[/math] , [math]V_r = \dot y\[/math]

[math]V_2 ^{2} = \dot y^{2}\ + \dot \varphi ^{2}\ l^{2} + 2\ l\dot y\dot \varphi \cos(\varphi )\[/math]

<math>T

См. также