Программа обучения на кафедре "Теоретическая Механика"
Кафедра "Теоретическая Механика" - одна из старейших кафедр СПбГПУ. В стенах только что открывшегося Политехнического института 3 октября 1902 года в 9 часов утра И. В. Мещерский прочел первую лекцию по теоретической механике для студентов всех технических отделений.
Обучение на кафедре "Теоретическая Механика" осуществляется коллективом профессионалов, имеющих богатый педагогический и научно-исследовательский опыт. Студентам, обучающимся на кафедре по направлению 010800 “Механика и математическое моделирование” предлагается большое количество разнообразных курсов. На этой странице размещены краткие описания некоторых курсов, адаптированные для абитуриентов. С учебными планами Вы можете ознакомиться здесь.
Бакалавриат (1-4 курс)[править]
Ниже приведено краткое описание курсов, читаемых студентам кафедры "Теоретическая механика" в бакалавриате (1-4 курс). Полный список предметов приведен на странице "Учебные планы (бакалавриат)".
Предметы физико-математического цикла[править]
Предметы физико-математического цикла (математика, физика, вычислительная математика, математическая физика, информатика и другие) даются студентам кафедры "Теоретическая механика" в расширенном объеме. Эти предметы являются базовыми для изучения специальных курсов и позволяют нашим студентам решать как фундаментальные, так и прикладные задачи.
Программирование и Вычислительная Механика[править]
Студентам кафедры "Теоретическая Механика" читаются как классические курсы по программированию на C++, C#, Qt, OpenGL, в т.ч. курсы о разработке программного обеспечения для многопроцессорных вычислительных систем (MPI), так и образовательные курсы по работе с ведущим программным обеспечением в области вычислительной механики: ABAQUS, EDEM и др. Подробнее...
Теоретическая механика[править]
Теоретическая механика — наука, изучающая движение материальных точек и твердых тел, в качестве которых могут выступать как окружающие нас объекты, так и объекты микромира (атомы, молекулы, микроструктуры) или макромира (звездные и планетные системы). Этот курс является основой для всех специальных курсов по механике. Курс читает заведующий кафедрой "Теоретическая Механика" профессор, доктор физико-математических наук А.М. Кривцов.
Теория колебаний[править]
Колебания атомов и молекул, вибрации в технике, звучание музыкальных инструментов — все это и многое другое относится к области изучения теории колебаний. Эта наука также может быть применена к изучению колебаний немеханической природы (квантовый осциллятор, колебания в электрических цепях).
Механика стержней[править]
Механика стержней традиционно использовалась в расчетах инженерно-строительных конструкций (например, Эйфелева башня). Стержни также являются основными элементами сложных машин и механизмов (ультра-центрифуга, валы турбин). В последние годы механика стержней получила новый импульс в связи с интенсивным развитием нанотехнологий, поскольку стержневые модели широко используются при описании фуллеренов и других нанообъектов. Курс читает профессор, доктор физико-математических наук Е.А. Иванова. Подробнее....
Магистратура (5-6 курс)[править]
Ниже приведено краткое описание курсов, читаемых студентам кафедры "Теоретическая механика" в магистратуре (5-6 курс). Полный список предметов приведен на странице "Учебные планы (магистратура)".
Механика разрушения[править]
Механика разрушения исследует причины возникновения различного рода повреждений и способы их предотвращения. Она изучает как проблемы разрушения конструкций в целом (здания, мосты, самолеты), так и зарождение и развитие микротрещин в материалах. Курс читает профессор, доктор физико-математических наук А.Б. Фрейдин.
Динамика твердого тела[править]
Динамика твердого тела находит широкое применение в разных областях науки и техники. Она исследует проблемы баллистики, задачи космической динамики (движения небесных тел и космических летательных аппаратов), служит для создания роботов-манипуляторов, гироскопических систем автоматического управления (автопилоты) и многого другого. Курс читает профессор, доктор физико-математических наук Е.А. Иванова.
Интересные примеры задач, которые могут быть решены методами динамики твердого тела приведены здесь.
Механика оболочек[править]
Механика оболочек изучает динамику тонкостенных конструкций как на макроуровне (корпуса самолетов, подводных лодок, автомобилей), так и на наноуровне (нанотрубки, фуллерен). Курс читает профессор, доктор физико-математических наук Е.А. Иванова. Подробнее...
Математическое моделирование[править]
Задачей курса является обучение студентов современным методам и технологиям математического моделирования в применении к актуальным задачам физики и механики. При этом особое внимание уделяется компьютерному моделированию. Имеющийся у сотрудников кафедры опыт моделирования физико-механических процессов на различных масштабных уровнях ( от атомарного до космического) активно используется в образовательном процессе. В частности, в программу курса входит ряд уникальных методов моделирования, разработанных и активно развиваемых на кафедре.
Экспериментальные методы микро- и наномеханики[править]
Курс предназначен для ознакомления будущих магистров-механиков с новейшими методами экспериментального исследования микроструктуры материалов, которые позволяют не только увидеть, но "ощупать" образцы на уровне их кристаллической структуры. В процессе обучения студенты учатся экспериментально определять механические характеристики наноматериалов, узнают теоретические основы работы в режимах оптической, электронной, а также сканирующей зондовой микроскопии (СЗМ), а также проходят лабораторный практикум на учебных нанотехнологических комплексах. Курс читает кандидат физико-математических наук А.В. Анкудинов.
Волны в упругих средах[править]
В рамках курса изучаются волновые процессы различной природы: волны в морях и океанах, распространение звука, света, радиосигналов, ударные волны при взрывах. Курс читает директор института проблем машиноведения РАН, профессор, член-корреспондент РАН Д.А. Индейцев.
Метод динамики частиц[править]
В курсе излагаются теоретические основы метода динамики частиц. Данный метод широко применяется как в науке, так и в промышленности (фармацевтической, химической, пищевой, горно-добывающей и др.) для моделирования динамических процессов в средах, состоящих из большого числа взаимодействующих частиц (порошков, горных пород, таблеток и т.д.). Курс читает заместитель заведующего кафедрой "Теоретическая Механика" по научной работе, кандидат физико-математических наук, В.А. Кузькин. Подробнее...
Наномеханика[править]
Наномеханика изучает создание, движение, деформирование и разрушение объектов, состоящих из конечного числа атомов. Появившаяся в последние десятилетия возможность не только наблюдать подобные объекты, но и создавать структуры, в которых буквально каждый атом помещается в определенное место, позволяет создавать как уникальные материалы (гиперупругие, сверхпрочные), так и на новом уровне подойди к решению таких задач, как создание искусственного интеллекта, лекарств избирательного действия и миниатюрных источников энергии.