Моделирование кабель-троса в задаче буксировки методом сосредоточенных параметров
БАКАЛАВРСКАЯ РАБОТА
Автор работы: А.Д. Степанов
Руководитель: к.т.н., зам главного конструктора бортовых систем ЗАО "Транзас" В. М. Амбросовский
Содержание
Введение
Создание морских навигационных тренажеров, тренажеров маневрирования и управления движением судов, а так же создание отладочно-исследовательских стендов для настройки и исследования систем автоматического управления движением судов, требует наличия математических моделей, обеспечивающих моделирование судов и других морских подвижных объектов. Математические модели морских подвижных объектов, используемые в тренажерах и стендах должны обеспечивать необходимую точность и скорость формирования параметров движения морских подвижных объектов.
Одной из важных математических моделей, необходимых для морских тренажеров и стендов является математическая модель тросов или кабель-тросов, связывающих судно с буксируемым морским подвижным объектом или причалом.
Математические модели движения судов и описываются хорошо известными обыкновенными дифференциальными уравнениями. В отличии от этих моделей математическая модель связи, т.е. троса или кабель-троса, описывается уравнением в частных производных, что делает эту задачу более сложной.
Известны работы, в которых рассматривается задачи моделирования буксировочных тросов, связывающих буксир и буксируемое судно или задачи буксировки судном подводного аппарата. Однако в указанных работах не учитываются ограничения, связанные с конечной производительностью обычных компьютеров, используемых в тренажерах и стендах.
В настоящей работе рассмотрена задача разработки математической модели кабель-троса в задачи буксировки подводного заглубителя судном кабелеукладчиком для использования в морских тренажерах и стендах.
Постановка задачи
В работе рассматривается задача моделирования кабель-тороса, связывающего кабельное судно с подводным заглубителем, предназначенным для укладки кабеля с заглублением в грунт. Кабель-трос обеспечивает буксировку подводного заглубителя и подачу на него электропитания. Схематическое положение судна, подводного заглубителя и кабель-троса и их взаимодействие показано на рисунке:
Математическая модель движения кабельного судна в общем случае описывается обыкновенными нелинейными дифференциальными уравнениями вида \cite{lukomskiy}:
где
--- сила тяги двигателей, и --- сила гидродинамического и аэродинамического сопротивления соотвественно, --- сила, действующая со стороны кабель-троса. Аналогичным образом можно записать уравнение движения подводного заглубителя.Уравнение описывающее положение кабель-троса и значение вектора силы, приложенного к подводному заглубителю, в общем случае имеет вид \cite{suhorukov_dinam}:
С учетом определяющего соотношения для силы натяжения
, уравнение принимает вид волнового уравнения, являющимся частным случаем уравнения гиперболического типа.
Метод моделирования
В общем случае трос представляет собой весьма сложный нелинейный объект. Как было сказано, для решения поставленной задачи, можно использовать модель абсолютно гибкого растяжимого троса. Окружающей среда (морская вода) в рамках данной работы будет рассматриваться, как вязкая жидкость. Для конкретизации определяющих соотношений, надо принять следующие допущения:
- трос и любой его сегмент подчиняется закону Гука;
- можно пренебречь распределенными по длине троса крутящими моментами, которые возникают при действие на трос растягивающей силы\cite{kuvshin_monograf};
- обтекание кабель-троса потоком набегающей жидкости всегда считается ламинарным.
Эти предположения позволяют упростить уравнения и использовать метод сосредоточенных параметров.
Применение метода моделирования
Трос надо разбить на N элементов и N+1 узел. Нумерация узлов начинается с конца, соединенного с буксировщиком, первый элемент имеет номер N=1. Для разбиения выбирается длина
, на основании которой вычисляется количество узлов, далее находим N по формуле и жесткость . Параметры узлов вычисляются следующим образом: масса , объем и находятся площадь поверхности и площадь сечения .%==Модель лука с упругими стержнями==
%==Эксперименты==
%==Результаты==