Гранецентрированная кубическая решетка

Материал из Department of Theoretical and Applied Mechanics
Версия от 02:41, 30 сентября 2013; Антон Кривцов (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Кафедра ТМ > Научный справочник > Кристаллические решетки > ГЦК решетка
Fcc.png

Сокращенное название: ГЦК решетка.

Еnglish: FCC (face-centered cubic) lattice.

Структура решетки

Атомы расположены в центрах граней и вершинах простой кубической решетки. Соответствует одной из возможных плотных упаковок шаров в пространстве. Ближайшие друг к другу атомы формируют тетраэдры и октаэдры, полностью заполняющие пространство.[1] Область пространства, лежащая ближе к данному атому, чем к остальным атомам,[2] для ГЦК решетки представляет собой ромбододекаэдр. Атомы, ближайшие к данному, лежат на вершинах кубооктаэдра.

Распространенность в природе

Этой решеткой обладает ряд металлов (алюминий, золото, медь, серебро, никель, платина и др.), ее образуют при конденсации инертные газы.

Геометрия решетки

Орты (единичные векторы) [math]{\bf n}_\alpha[/math], задающие направление от некоторого атома кристаллической решетки к его ближайшим соседям, могут быть представлены в виде:

[math]\textbf{n}_{1,2,3,4},=\frac{1}{\sqrt{2}}(\pm \textbf{i}\pm \textbf{j}),\quad \textbf{n}_{5,6,7,8},=\frac{1}{\sqrt{2}}(\pm \textbf{j}\pm \textbf{k}),\quad \textbf{n}_{9,10,11,12},=\frac{1}{\sqrt{2}}(\pm \textbf{i}\pm \textbf{k}) [/math],

где [math]{\bf i},\,{\bf j},\,{\bf k}[/math] — орты Декартовой системы координат.

Безразмерные параметры координационного тензора[3]

[math] \eta=2; \quad M_\kappa=-1; \quad M_\mu=1. [/math]

Примечания

  1. Tetrahedral-octahedral honeycomb.
  2. Для простых решеток подобную область называют ячейкой Вигнера-Зейтца.
  3. А.М. Кривцов. Теоретическая механика. Упругие свойства одноатомных и двухатомных кристаллов: учеб. пособие. - СПб.: Изд-во Политехн. ун-та, 2009. - 126 c.