Устойчивость протопланетного облака системы "Земля - Луна" часть 3
Постановка задачи Пусть имеется тело радиуса
с поверхности которого отделяются частицы. На расстоянии от первого тела находится небольшая площадка.Требуется подсчитать силу, с которой сфера взаимодействует с площадкой.
Исходим из следующих соображений.
- Все частицы имеют одинаковую массу
- Все частицы отделяются от сферического тела
1) В радиальных направлениях
2) С одинаковой начальной скоростью
3) без ускорения
Решение
Запишем уравнение непрерывности для среды с источником излучения.
,
где
-концентрация частиц,
-Интенсивность испарения сферы
-дельта функция Дирака.
Первое слагаемое в силу стационарности-ноль.
Рассмотрим небольшую площадку площадью
, находящеюся на расстоянии , от излучающего тела. Тогда переданный импульс при абсолютно-упругом ударе за время будет,
отсюда
Постановка задачи
В условиях прошлой задачи, учесть эффект экранирования.
Решение
Если среда, где распространяется излучение, не пустая присутствует экранирующий эффект, тогда , в соответствии с [работой], как
, где
концентрация пылинок.
эффектная площадь частиц среды.
Постановка задачи
Для испаряющейся с интенсивностью
сферической частицы радиуса , в среде с частицами с концентрацией и площадью написать выражение для созданного ей отталкивающего потенциала на расстоянии r.
Решение
Характеристикой испарения, при одинаковой интенсивности является площадь частицы. Использую метод пробной частицы,радиуса внесенной в отталкивающее поле, получим связь силы и потенциала:
и
P.S.Для гравирующей частицы потенциал будет очевидно равен:
Если принять тот факт, что вся среда состоит из сферических частиц радиуса
, то последнее выражение можно записать в виде: