Интегрирование вращательных степеней свободы с использованием тензора-интегратора Жилина
Материал из Department of Theoretical and Applied Mechanics
Версия от 18:28, 19 мая 2012; Ковалев Олег (обсуждение | вклад)
Содержание
Тема проекта
- Интегрирование вращательных степеней свободы с использованием тензора-интегратора Жилина
Постановка задачи
- Интегрирование вращательного движения частицы, при моментном взаимодействии, с использованием тензора Жилина
Решение
Рассмотрим две частицы. К каждой из частиц жестко привяжем по вектору, которые в положения равновесия сонаправлены (вообще говоря, это условие необязательное) и сообщим начальные угловые скорости. Предположим, что момент, действующий на одну частицу, со стороны другой, есть функция этих самых векторов (например, векторное произведение данных векторов). Далее требуется определить новые положения векторов, связанных с частицами. Для этого требуется проинтегрировать уравнения движения для данных частиц. Значение угловой скорости получаем из второго уравнения динамики, значение угла поворота из соотношения, связывающего скорость изменение угла с угловой скоростью частицы.