Определение упругих модулей материала

Материал из Department of Theoretical and Applied Mechanics
Версия от 13:05, 19 января 2018; 217.66.152.29 (обсуждение) (Алгоритм компьютерного эксперимента)

Перейти к: навигация, поиск

Введение

В настоящее время большое внимание уделяется исследованию упругих свойств различных материалов.

В данной работе рассматриваются два упругих модуля - коэффициент Пуассона и модуль Юнга. Вычисление модулей упругости материала ведется с помощью компьютерного эксперимента. При вычислении используется метод молекулярной динамики (ММД). При вычислении ставятся фиксированные граничные условия.

Алгоритм компьютерного эксперимента

Весь компьютерный эксперимент можно условно разделить на три этапа.

На первом этапе вычисления находится положение равновесия материала в растянутом состоянии. При этом задается растяжение вдоль одной из оси симметрии решетки (оси X). На этом этапе решается динамическая задача достижения положения равновесия. Компьютерный эксперимент производится посредством вычисления радиус векторов и векторов скорости частиц в зависимости от времени. Интегрирование ведется методом центральных разностей. Метод состоит в том, что координаты и силы вычисляются во временных точках, разделенных интервалами, равными шагу интегрирования, а скорости вычисляются во временных точках, находящихся в серединах вышеупомянутых интервалов:

[math]\underline{v} (t + \tau / 2) = \underline{v} (t - \tau / 2) + \underline{w} (t) \tau[/math]

[math]\underline{r} (t + \tau) = \underline{r} (t) + \underline{v} (t + \tau / 2) \tau,[/math]

где [math]\tau[/math] – шаг интегрирования. Ускорение [math]\underline{w}(t)[/math] вычисляется через приложенную к частице силу. Второй этап представляет собой определение слагаемых сил, действующих на один атом системы и на соседние с ним атомы. Эта часть содержит вычисление значения производных от одного слагаемого потенциальной энергии системы, т.е. потенциальной энергии, приходящейся на один атом.

На втором этапе механические напряжения в решетке вычисляются по формулам:

[math] {{\underline{\underline{\tau\hspace{-0.5mm}}}\hspace{0.5mm}}}_i = \frac{1}{2V} \sum_{\alpha} \underline{F}_{\alpha}^i \underline{A}_{\alpha}^i = \frac{1}{2V} \sum_{\alpha} \underline{F}_{\alpha}^i (\underline{r}_{\alpha}^i - \underline{r}_i), [/math]

иначе

[math] {{\underline{\underline{\tau\hspace{-0.5mm}}}\hspace{0.5mm}}}_i = \frac{1}{V} \sum_{\alpha} \frac{\partial \Pi^i}{\partial \underline{A}_{\alpha}^i} (\underline{r}_{\alpha}^i - \underline{r}_i), \quad \Pi^i = \frac{1}{2} \sum_{j (\neq i)} V_{ij} [/math]

Здесь [math]{{\underline{\underline{\tau\hspace{-0.5mm}}}\hspace{0.5mm}}}_i[/math] – тензор механических напряжений для частицы (атом углерода) с номером [math]i[/math]. При однородном поле деформации находится средний тензор напряжений [math]({{\underline{\underline{\tau\hspace{-0.5mm}}}\hspace{0.5mm}}}_i)[/math] по всем частицам. [math]V[/math] – объем ячейки периодичности (в двумерной постановке – площадь). [math]\underline{F}_{\alpha}^i[/math] – векторный коэффициент, равный [math]\displaystyle 2 \frac{\partial \Pi^i}{\partial \underline{A}_{\alpha}^i}[/math], где [math]\alpha[/math] – номер соседней частицы к частице с номером [math]i[/math]. [math]\underline{A}_{\alpha}^i[/math] – вектор относительного положения соседней частицы: [math]\underline{A}_{\alpha}^i = \underline{r}_{\alpha}^i - \underline{r}_i[/math], где [math]\underline{r}_i[/math] – радиус-вектор частицы с номером [math]i[/math], [math]\underline{r}_{\alpha}^i[/math] – радиус-вектор соседней частицы ([math]\alpha[/math]). [math]V_{ij}[/math] – энергия, приходящаяся на одну связь.


Третий этап представляет собой нахождение упругих модулей через коэффициенты упругости. Для нахождения коэффициентов упругости воспользуемся формулами для их выражения через компоненты тензоров напряжения и деформации.

В трехмерном материале коэффициенты упругости определяются через следующие выражения:

[math] \begin{array}{l} \sigma_1 = C_{11} \varepsilon_{11} + C_{12} \varepsilon_{22} + C_{12} \varepsilon_{33},\quad \sigma_2 = C_{12} \varepsilon_{11} + C_{11} \varepsilon_{22} + C_{12} \varepsilon_{33},\\ \sigma_3 = C_{12} \varepsilon_{11} + C_{12} \varepsilon_{22} + C_{11} \varepsilon_{33},\\ \tau_{12} = 2 C_{44} \varepsilon_{12},\quad \tau_{23} = 2 C_{44} \varepsilon_{23},\quad \tau_{31} = 2 C_{44} \varepsilon_{31}. \end{array} [/math]


Модули упругости выражаются по формулам:

[math] \nu = \frac{C_{12}}{C_{11} + C_{12}},\quad E = \frac{(C_{11} - C_{12}) (C_{11} + 2 C_{12})}{(C_{11} + C_{12})}, где E - модуль Юнга, \nu - коэффициент Пуассона [/math]

При выборе конкретного материалана основе ГЦК с расстоянием между частицами [math]d = 0.33, [/math] упругие модули получились следующими [math]E = 0.926682, \nu = 0.2274 [/math] \nu - коэффициент Пуассона