Программа обучения на кафедре "Теоретическая Механика"

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск

Кафедра "Теоретическая Механика" - одна из старейших кафедр СПбГПУ. В стенах только что открывшегося Политехнического института 3 октября 1902 года в 9 часов утра И. В. Мещерский прочел первую лекцию по теоретической механике для студентов всех технических отделений.

Обучение на кафедре "Теоретическая Механика" осуществляется коллективом профессионалов, имеющих богатый педагогический и научно-исследовательский опыт. Студентам, обучающимся на кафедре по направлению 010900 “Прикладные математика и физика” (бакалавриат, 4 года обучения) и направлению 010800 “Механика и математическое моделирование” (магистратура) предлагается большое количество разнообразных курсов. На этой странице размещены краткие описания некоторых курсов.

Бакалавриат

Предметы физико-математического цикла

Предметы физико-математического цикла (математика, физика, вычислительная математика, математическая физика, информатика и другие) даются студентам кафедры "Теоретическая механика" в расширенном объеме. Эти предметы являются базовыми для изучения специальных курсов и позволяют нашим студентам решать как фундаментальные, так и прикладные задачи.

Программирование

Студентам кафедры "Теоретическая Механика" читаются как классические курсы по программированию на Fortran, С, C++, C#, так и курсы о разработке программного обеспечения для многопроцессорных вычислительных систем.

Теоретическая механика

Теоретическая механика — наука, изучающая движение материальных точек и твердых тел, в качестве которых могут выступать как окружающие нас объекты, так и объекты микромира (атомы, молекулы, микроструктуры) или макромира (звездные и планетные системы). Этот курс является основой для всех специальных курсов по механике. Курс читает заведующий кафедрой "Теоретическая Механика" профессор, доктор физико-математических наук А.М. Кривцов.

Теория колебаний

Колебания атомов и молекул, вибрации в технике, звучание музыкальных инструментов — все это и многое другое относится к области изучения теории колебаний. Эта наука также может быть применена к изучению колебаний немеханической природы (квантовый осциллятор, колебания в электрических цепях).

Механика стержней

Механика стержней традиционно использовалась в расчетах инженерно-строительных конструкций (например, Эйфелева башня). Стержни также являются основными элементами сложных машин и механизмов (ультра-центрифуга, валы турбин). В последние годы механика стержней получила новый импульс в связи с интенсивным развитием нанотехнологий, поскольку стержневые модели широко используются при описании фуллеренов и других нанообъектов. Курс читает профессор, доктор физико-математических наук Е.А. Иванова. Подробнее....


Магистратура

Механика разрушения

Механика разрушения исследует причины возникновения различного рода повреждений и способы их предотвращения. Она изучает как проблемы разрушения конструкций в целом (здания, мосты, самолеты), так и зарождение и развитие микротрещин в материалах. Курс читает профессор, доктор физико-математических наук А.Б. Фрейдин.

Динамика твердого тела

Динамика твердого тела находит широкое применение в разных областях науки и техники. Она исследует проблемы баллистики, задачи космической динамики (движения небесных тел и космических летательных аппаратов), служит для создания роботов-манипуляторов, гироскопических систем автоматического управления (автопилоты) и многого другого. Курс читает профессор, доктор физико-математических наук Е.А. Иванова.

Механика оболочек

Механика оболочек изучает динамику тонкостенных конструкций как на макроуровне (корпуса самолетов, подводных лодок, автомобилей), так и на наноуровне (нанотрубки, фуллерен). Курс читает профессор, доктор физико-математических наук Е.А. Иванова. Подробнее...

Математическое моделирование

Задачей курса является обучение студентов современным методам и технологиям математического моделирования в применении к актуальным задачам физики и механики. При этом особое внимание уделяется компьютерному моделированию. Имеющийся у сотрудников кафедры опыт моделирования физико-механических процессов на различных масштабных уровнях ( от атомарного до космического) активно используется в образовательном процессе. В частности, в программу курса входит ряд уникальных методов моделирования, разработанных и активно развиваемых на кафедре.

Экспериментальные методы микро- и наномеханики

Курс предназначен для ознакомления будущих магистров-механиков с новейшими методами экспериментального исследования микроструктуры материалов, которые позволяют не только увидеть, но "ощупать" образцы на уровне их кристаллической структуры. В процессе обучения студенты учатся экспериментально определять механические характеристики наноматериалов, узнают теоретические основы работы в режимах оптической, электронной, а также сканирующей зондовой микроскопии (СЗМ), а также проходят лабораторный практикум на учебных нанотехнологических комплексах. Курс читает кандидат физико-математических наук А.В. Анкудинов.

Волны в упругих средах

В рамках курса изучаются волновые процессы различной природы: волны в морях и океанах, распространение звука, света, радиосигналов, ударные волны при взрывах. Курс читает директор института проблем машиноведения РАН, профессор, член-корреспондент РАН Д.А. Индейцев.

Метод динамики частиц

В курсе излагаются теоретические основы метода динамики частиц. Данный метод широко применяется как в науке, так и в промышленности (фармацевтической, химической, пищевой, горно-добывающей и др.) для моделирования динамических процессов в средах, состоящих из большого числа взаимодействующих частиц. Курс читает заместитель заведующего кафедрой "Теоретическая Механика" по научной работе, кандидат физико-математических наук, В.А. Кузькин. Подробнее...

Наномеханика

Наномеханика изучает создание, движение, деформирование и разрушение объектов, состоящих из конечного числа атомов. Появившаяся в последние десятилетия возможность не только наблюдать подобные объекты, но и создавать структуры, в которых буквально каждый атом помещается в определенное место, позволяет создавать как уникальные материалы (гиперупругие, сверхпрочные), так и на новом уровне подойди к решению таких задач, как создание искусственного интеллекта, лекарств избирательного действия и миниатюрных источников энергии.

См. также

Не удается найти HTML-файл YandexMetrika.html