Плоские волны в гармонической треугольной решетке

Материал из Department of Theoretical and Applied Mechanics
Версия от 20:41, 16 февраля 2019; 92.100.226.124 (обсуждение) (top)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Шаблон:Просьба переименовать
Курсовые работы 2018-2019 учебного года > Колебания частицы в треугольной решетке

Курсовой проект по Механике дискретных сред

Исполнитель: Киселёв Лев

Группа: 43604/1

Семестр: осень 2018

Формулировка задачи

Смоделировать плоское движение частиц в гармонической треугольной решетке.

Математическая модель

Исходное уравнение движения для данной треугольной решетки имеет следующий вид: [math] \vec{\ddot u_{n, k}} = \omega^2(\vec{e_1}\vec{e_1}(\vec{u_{n + 1, k}} - 2 \vec{u_{n, k}} + \vec{u_{n - 1, k}}) + \vec{e_2}\vec{e_2}(\vec{u_{n, k + 1}} - 2 \vec{u_{n, k}} + \vec{u_{n, k - 1}}) + \vec{e_3}\vec{e_3}(\vec{u_{n + 1, k + 1}} - 2 \vec{u_{n - 1, k - 1}} + \vec{u_{n, k}})) [/math]
Численное интегрирование производилось методом leap-frog.
Формула для вычисления перемещений на каждом временном шаге:
[math] u_{i + 1} = u_{i} + \dot u_{i} \Delta t + \frac{1}{2} \ddot u_{i} \Delta t^2 [/math]
Формула для вычисления ускорений на каждом временном шаге:
[math] \dot u_{i + 1} = \dot u_{i} + \frac{1}{2} (\ddot u_{i} + \ddot u_{i + 1}) \Delta t [/math]

Участники проекта

См. также