Моделирование колебаний резонаторов на основе углеродных вискеров

Материал из Department of Theoretical and Applied Mechanics
Версия от 16:41, 17 ноября 2015; Валентина (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

БАКАЛАВРСКАЯ РАБОТА
Автор работы: Ванюшкина Валентина
Научный руководитель: И.Е. Беринский

Введение

Нановискеры - структуры, полученные из аморфного углерода, длина которых не превышает сотни микрометров. Могут быть разных форм и размеров и применятся как наноинструменты. Целью данной работы является исследование динамики нановискеров с целью их оптимального применения в наноэлектромеханических системах, путем нахождения деформаций и напряжений различных наноструктур, для улучшение качеств дальнейших экспериментов, а так же подбор идеальных параметров конструкций и материалов.Это поможет значительно сократить количество неудачных экспериментов, а так же выявить новые свойства наноструктур, которые не были выявлены в ходе эксперимента. Так же с помощью данных моделирований становится более понятна природа и виды колебаний и деформаций, вызванных ими. Во всех последующих расчетах в качестве параметров материала вискеров взяты параметры аморфного углерода:[math] E=2\cdot 10^{10} [/math]Па - модуль Юнга, [math] \rho=2200 [/math] кг/м[math]^3 [/math] - плотность. При этом известно, что аморфный углерод - изотропный материал, а это значит, что его физические и механические свойства не зависят от направления.

Некоторые виды вискеров

Простейшие колебательные системы

Для представления колебаний одиночного вискера, наращенного на игле, было использовано моделирование механических систем с двумя степенями свободы. Это позволяет приближенно оценить колебания данной наносистемы и найти ее первые две собственные частоты. Задача о представлении вискера, прикрепленного к игле, была разделена на две подзадачи: о продольных колебаниях и поперечных колебаниях системы. Поскольку исследуемый объект состоит из двух тел, то логично представить его в виде системы с двумя степенями свободы. Очевидно, что в реальности степеней свободы будет бесконечное множество, но для нахождения первых двух собственных частот, достаточно рассмотреть упрощенную модель. Решения, полученные для данной задачи представленны в виде интерактивных моделей: Простейшая колебательная система с двумя степенями свободы и Колебания двойного маятника

Модель нановесов

Исследуемые весы сделаны из углеродных наноструктур, называемых одиночными вискерами. Это углеродная балка очень маленьких размеров. На нее падает частица с некоторой скоростью, в результате чего вискер начинает колебаться. Исследовав колебания вискера, можно будет определить массу объекта, упавшего на вискер. Для этого была построена конечноэлементная модель вискера с точечной массой на правом конце и заделкой на левом. Проведен расчет собственных частот и форм колебаний, а так же найдено аналитическое решение:[math]f = \sqrt\frac{3E(\frac{d}{2})^4}{16\pi (0.227*m_1+M)l^3}[/math], где [math]f [/math] -собственная частота колебаний системы.

Нановесы

Было проведено сравнение результатов, полученных аналитически и методом конечных элементов.

Сравнение зависимости собственной частоты от массы взвешиваемого объекта в зависимости от метода решения.

Конечноэлементное моделирование сложных структур.

Для рассмотрения колебаний сложных структур, были созданы их конечноэлементные мо- дели и проведен расчет собственных и вынужденных колебаний.При создании моделей, бы- ли использованы размеры реальных наноконструкций, но увеличенные в 106 раз, так как в программном пакете ANSYS Workbench не предусмотрена работа с наноразмерами, однако понятно, что собственные формы не изменятся, а значения частот уменьшатся в 106 раз, не меняя при этом свое мантиссы. Некоторые из получившихся результатов представлены ниже.

Выводы

В данной работе проведено исследование продольных и поперечных колебаний вискера на игле с помощью представления этой системы в виде механической системы с двумя степенями свободы. Для продольных и поперечных колебаний были найдены аналитически уравнения движения и созданы интерактивные модели.Эти модели позволяют анализировать текущее движение системы в зависимости от параметров вискера и иглы. В дальнейшем к данной части работы будет добавлена модель с постоянным гармоническим воздействием на иглу, что позволит исследовать колебания, более приближенные к реальным и рассмотреть случай динамического гашения колебаний вискера. Так же была рассмотрена модель нановесов для случая падения массы точно на конец вискера. Были смоделированы сложные конструкции из вискеров, такие как вилка, скальпель и камертон. При моделировании этих конструкции мы получили два набора собственных частот (два спектра), так как модели трехмерные. Полезны собственные частоты и формы только в плоскости самой конструкции, так как при реальных экспериментах колебания происходят именно в этих плоскостях. Найдены только первые две собственные частоты каждого спектра, это объясняется тем, что чем ниже порядок частоты, тем проще попасть в нее при реальных экспериментах. Практически невозможно попасть в резонанс с третей и выше собственными частотами. Для модели вискера на игле представлены только две собственные формы, так как эта модель осесимметрична и ее спектры и собственные формы, соответствующие частотам этих двух спектров совпадают,но располагаются в разных плоскостях. В дальнейшем, планируется решить полностью задачу нановесов, составив систему уравнений, для нахождения собственных частот; исследовать более сложные конструкции, например трехмерные; создать интерактивную модель динамического гасителя колебаний. Продолжение данного исследования необходимо, так как направление экспериментального создания вискеров развивается очень быстро. За последний год были построены и исследова- ны гораздо более сложные конструкции и найдены новые пути их применения. Но каждый эксперимент трудоемок, сложен и требует как финансовых, так и ресурсных затрат. В будущем планируется предсказывать результаты эксперементов с целью сокращения их числа и достижения максимальной эффективности работы специалистов-экспериментаторов. Колебания нанокамертона Клебания нановилки

Список литературы

  • Z.L.Wang, P.Poncharal, W.A. de Heer. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solids, 2000, 61(7), pp.1025- 1030
  • Dynamik der Baukonstruktionen, Christian Petersen 2000 1st edition,722 [3] И.М.Бабаков. Теория колебаний.1968,3
  • Я.С.Гринберг, Ю.А.Пашкин, Е.В.Ильичев. Наномеханические резонаторы.2012.
  • Mai Duc Dai, Chang-Wan Kim, Kilho Eom. Nonlinear vibration of graphene resonators and their applications in sensitive mass detection. Nanoscale Research Letters 2012 7:499
  • Новопашенный Г.Н. Электронные измерительные приборы. 1966. 268