Простой гармонический одномерный кристалл
Материал из Department of Theoretical and Applied Mechanics
Версия от 21:25, 8 августа 2015; Антон Кривцов (обсуждение | вклад)
Кафедра ТМ > Научный справочник > Механика > МДС >Одномерный кристалл>Простой гармонический
Одномерный кристалл с линейным взаимодействием между частицами, в котором все частицы и связи одинаковы. Наиболее простая модель в механике дискретных сред, обнаруживающая, однако, очень непростое поведение, прежде всего в задачах распространения тепла.
Содержание
Уравнение движения
Классическая динамика рассматриваемого кристалла описывается следующим линейным дифференциально-разностным уравнением второго порядка
где
— масса атома, — жесткость связи, — перемещение атома, — внешняя сила, — номер атома, точкой обозначена производная по времени.Публикации по теме
Тепловые процессы
- A. Dhar, R. Dandekar. Heat transport and current fluctuations in harmonic crystals. Physica A: Statistical Mechanics and its Applications (2015), Volume 418, 49-64. Abstract.
- А.М. Кривцов. Распространение тепла в бесконечном одномерном гармоническом кристалле. Доклады Академии Наук (2015), том 464, № 2. (Скачать pdf корректуры статьи: 618 Kб) (Аналитически получены аналоги уравнения теплопроводности и закона Фурье).
- А.М. Кривцов. Колебания энергий в одномерном кристалле. Доклады Академии Наук (2014), том 458, № 3, 279-281. (Скачать pdf: 180 Kb). English version: A.M. Krivtsov. Energy Oscillations in a One-Dimensional Crystal. Doklady Physics (2014), Volume 59, No. 9, 427–430. (Download pdf: 162 Kb) (Аналитически описан процесс выхода на тепловое равновесие для пространственно-однородного состояния кристалла).
- D. Roy, A. Dhar. Heat Transport in Ordered Harmonic Lattices. J Stat Phys (2008), Volume 131, Issue 3, 535–541. (Abstract, pdf) (Получена точная формула для теплового потока в гармонической цепочке, в частных случаях воспроизводящая результаты Rieder et al. (1967) и Nakazawa (1970), исследуется также квантовый случай).
- H. Nakazawa. On the Lattice Thermal Conduction. Prog. Theor. Phys. Supplement (1970), Volume 45, 231-262. Abstract (Результаты Rieder at al (1967) аналитически распространяются на другие граничные условия и пространственный гармонический кристалл, для ангармонической цепочки численно показано, что тепловое сопротивление растет с увеличением нелинейности).
- Z. Rieder, J. L. Lebowitz and E. Lieb. Properties of a Harmonic Crystal in a Stationary Nonequilibrium State. J. Math. Phys. (1967), Volume 8, Issue 5, 1073. Abstract (Впервые показано, что для гармонической цепочки тепловой поток не зависит от количества частиц, а равновесная температура везде, кроме окрестности краев, равна полусумме температур краевых точек).
Релаксационная динамика
В случае, когда
и коэффициент вязкости достаточно велик, чтобы можно было пренебречь инерционным слагаемым , уравнение динамики Ньютона (2-го порядка) преобразуются в уравнения релаксационной динамики (1-го порядка):Подобные модели рассматриваются для описания, в частности, волн заряда-плотности в сверхпроводниках (CDW: charge-density waves).
Другие вопросы
- A. Wierling. Dynamic structure factor of linear harmonic chain – A recurrence relation approach. The European Physical Journal B (2012), Volume 85, Issue 1, Article number 20. Abstract (Получено рекуррентное соотношение для определения динамического структурного множителя в гармонической цепочке).