Плотноупакованные кристаллические решетки

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск

Общие сведения

Кристаллическая решетка называется плотноупакованной, если ей соответствует плотная упаковка шаров. Координационное число [math]M[/math] и объем элементарной ячейки [math]V[/math] плотноупакованной решетки определяются формулами[1]

[math] M = d(d+1) \,,\qquad V = \frac{\sqrt{5-d}}2\,a^d, [/math]

где [math]d=1,2,3[/math] — размерность пространства:

[math]d[/math] [math]M[/math] [math]V[/math] [math]Va^{-d}[/math]
[math]1[/math] [math]2[/math] [math]a[/math] [math]1.00[/math]
[math]2[/math] [math]6[/math] [math]\frac{\sqrt3}2\,a^2[/math] [math]0.87[/math]
[math]3[/math] [math]12[/math] [math]\frac{\sqrt2}2\,a^3[/math] [math]0.71[/math]

Примеры плотноупакованных решеток

Одномерные

Двухмерные

Трехмерные

Примечания

  1. По крайней мере в пространствах размерности 1, 2 и 3. Если кому-то известно доказательство для пространств более высокой размерности — просьба поставить ссылку.

См. также

Литература