Моделирование удара хлыста — различия между версиями
(→Постановка задачи) |
(→Постановка задачи) |
||
Строка 6: | Строка 6: | ||
'''Семестр:''' осень 2023 | '''Семестр:''' осень 2023 | ||
+ | |||
==Постановка задачи== | ==Постановка задачи== | ||
Необходимо смоделировать удар, закрепленного с левой стороны, гибкого хлыста в двумерной постановке. | Необходимо смоделировать удар, закрепленного с левой стороны, гибкого хлыста в двумерной постановке. | ||
Хлыст состоит из частиц n-ого количества частиц различной массы и n-1 соединенных пружин, имеющих одинаковую жесткость. | Хлыст состоит из частиц n-ого количества частиц различной массы и n-1 соединенных пружин, имеющих одинаковую жесткость. | ||
+ | |||
+ | <gallery> | ||
+ | pic.jpg|Описание | ||
+ | </gallery> | ||
\begin{center} | \begin{center} |
Версия 20:14, 14 января 2024
Курсовой проект по Механике дискретных сред
Исполнитель: Еремеева Наталья
Группа: 5030103/00101
Семестр: осень 2023
Постановка задачи
Необходимо смоделировать удар, закрепленного с левой стороны, гибкого хлыста в двумерной постановке. Хлыст состоит из частиц n-ого количества частиц различной массы и n-1 соединенных пружин, имеющих одинаковую жесткость.
- Pic.jpg
Описание
\begin{center} \includegraphics[width=0.85]{pic.jpg}\\ \end{center}
Математическая модель
Начальные условия:
Запишем уравнение движения для каждой из материальных точек::
где
- силы упругости действующие на -ую частицу со стороны и соответственно;- сила тяжести, действующая на -ую частицу;
Сила упругости, возникающая в пружине соединяющей частицу
и , вычисляется по следующей формуле:, где - коэффициент жесткости пружины.
Будем работать в декартовой системе координат:
Для хорошей сходимости задач механики дискретных сред в задачах необходимо привести физические величины к безразмерным:
Интегрирование уравнений движения осуществляется при помощи метода Верле.