Задача падающей цепочки — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Новая страница: «'''Курсовой проект по Введение в механику дискретных сред''''' '''Исполнитель:''' Борисен…»)
 
Строка 7: Строка 7:
 
'''Семестр:''' осень 2022
 
'''Семестр:''' осень 2022
  
===Постановка задачи===
+
==Постановка задачи==
 
В рамках проекта необходимо смоделировать движение одномерной цепочки: начальное положение (провисание) цепочки и дальнейшее ее падение при отпускании одного из концов под действием силы тяжести, а также исследовать зависимость ускорения крайней свободной частицы от времени.
 
В рамках проекта необходимо смоделировать движение одномерной цепочки: начальное положение (провисание) цепочки и дальнейшее ее падение при отпускании одного из концов под действием силы тяжести, а также исследовать зависимость ускорения крайней свободной частицы от времени.
  
===Математическая модель ===
+
==Математическая модель==
 
Изначально запишем закон движения:
 
Изначально запишем закон движения:
 
<math>
 
<math>
Строка 40: Строка 40:
 
X_{i+1} = X_i+V_{i+1}\Delta{t},
 
X_{i+1} = X_i+V_{i+1}\Delta{t},
 
\end{cases} </math>
 
\end{cases} </math>
===Численное моделирование===
+
==Численное моделирование==
 
{{#widget:Iframe |url = http://tm.spbstu.ru/htmlets/js2020/Borisenkov/Falling_Chain/Chain2.html| width= 1200 | height = 600}}
 
{{#widget:Iframe |url = http://tm.spbstu.ru/htmlets/js2020/Borisenkov/Falling_Chain/Chain2.html| width= 1200 | height = 600}}
===Выводы===
+
==Выводы==
  
 
В рамках решения задачи смоделировано движение цепочки под действием силы тяжести и проилюсстрирован тот факт, что ускорение крайней массы цепочки больше, чем ускорение свободно падающего тела. Данный эффект объясняется начальным преднатяжением цепочки.
 
В рамках решения задачи смоделировано движение цепочки под действием силы тяжести и проилюсстрирован тот факт, что ускорение крайней массы цепочки больше, чем ускорение свободно падающего тела. Данный эффект объясняется начальным преднатяжением цепочки.

Версия 10:58, 25 января 2023

Курсовой проект по Введение в механику дискретных сред

Исполнитель: Борисенков Богдан

Группа: 5030103/90101

Семестр: осень 2022

Постановка задачи

В рамках проекта необходимо смоделировать движение одномерной цепочки: начальное положение (провисание) цепочки и дальнейшее ее падение при отпускании одного из концов под действием силы тяжести, а также исследовать зависимость ускорения крайней свободной частицы от времени.

Математическая модель

Изначально запишем закон движения: [math] m\underline{\ddot{r}}_i(t)=\underline{F}_{i-1}+\underline{F}_{i+1} + \underline{F}_{g}\\ \underline{r}_i(0)=\underline{r}_i^0,~\underline{v}_i(0)=0~~~i=1,\ldots,n [/math]

где [math] \underline{F}_{i-1}, \underline{F}_{i+1}\\ [/math] - силы упругости действующие на [math]i[/math]-ую частицу со стороны [math]i-1[/math] и [math]i+1[/math] соответственно, а [math] \underline{F}_{g}=-mg\underline{k} \\ [/math] - сила тяжести.

Далее распишем силу упругости как произведение модуля на соответствующий орт: [math] \underline{F}_{i+1}= c(|\underline{r}_{i+1}-\underline{r}_{i}| - l_0)\frac{(\underline{r}_{i+1}-\underline{r}_{i})}{|\underline{r}_{i+1}-\underline{r}_{i}|} [/math], где [math]c[/math] - коэффициент жесткости пружины. Аналогично записывается сила [math]\underline{F}_{i-1}[/math].

Далее подставляя все силы в уравнение движения, получим:

[math] m\underline{\ddot{r}}_i(t)= c(||\underline{r}_{i+1}-\underline{r}_i|| -l_0)\frac{(\underline{r}_{i+1}-\underline{r}_i)}{||\underline{r}_{i+1}-\underline{r}_i||} + c(||\underline{r}_{i-1}-\underline{r}_i|| - l_0)\frac{(\underline{r}_{i-1}-\underline{r}_i)}{||\underline{r}_{i-1}-\underline{r}_i||} - mg\underline{k}\\ [/math]

Дальнейшее интегрирование уравнения производится с помощью явного симплектического метода Верле c нулевыми начальными условиями и условиями закрепления на концах.

[math] \begin{cases} V_{i+1} = V_i+A_i\Delta{t}\\ X_{i+1} = X_i+V_{i+1}\Delta{t}, \end{cases} [/math]

Численное моделирование

Выводы

В рамках решения задачи смоделировано движение цепочки под действием силы тяжести и проилюсстрирован тот факт, что ускорение крайней массы цепочки больше, чем ускорение свободно падающего тела. Данный эффект объясняется начальным преднатяжением цепочки.