Моделирование теплового потока в дискретной среде методами разрушения — различия между версиями
(Новая страница: «'''''Дипломная работа ''''' '''Исполнитель:''' Колбасов Алексей '''Группа:''' 5030103/90101 '''Семест…») |
|||
Строка 8: | Строка 8: | ||
На макроскопическом уровне распространение тепла в большинстве материалов описывается законом Фурье, согласно которому тепловой поток пропорционален градиенту температуры. Являясь удобной математической моделью, закон Фурье приводит к ряду физических парадоксов, таких, как мгновенное распространение тепла. Заметные отклонения от закона Фурье наблюдаются на малых временных и пространственных масштабах. Кроме того известно, что в простейших дискретных системах, таких как одномерный гармонический кристалл (цепочка частиц, связанных линейными пружинами) распространение тепла не подчиняется закону Фурье. В настоящее время вопрос о распространения тепла в идеальных кристаллических системах остается открытым. Вместе с тем, данный вопрос приобретает особую актуальность, так как с развитием нанотехнологий расширяется возможность применения идеальных бездефектных кристаллов и их уникальных теплопроводящих свойств. Кроме того, рациональное описание процессов теплопереноса необходимо для замыкания уравнений механики дискретных сред и приложения их к описанию термомеханики твердых тел на наномасштабном уровне. | На макроскопическом уровне распространение тепла в большинстве материалов описывается законом Фурье, согласно которому тепловой поток пропорционален градиенту температуры. Являясь удобной математической моделью, закон Фурье приводит к ряду физических парадоксов, таких, как мгновенное распространение тепла. Заметные отклонения от закона Фурье наблюдаются на малых временных и пространственных масштабах. Кроме того известно, что в простейших дискретных системах, таких как одномерный гармонический кристалл (цепочка частиц, связанных линейными пружинами) распространение тепла не подчиняется закону Фурье. В настоящее время вопрос о распространения тепла в идеальных кристаллических системах остается открытым. Вместе с тем, данный вопрос приобретает особую актуальность, так как с развитием нанотехнологий расширяется возможность применения идеальных бездефектных кристаллов и их уникальных теплопроводящих свойств. Кроме того, рациональное описание процессов теплопереноса необходимо для замыкания уравнений механики дискретных сред и приложения их к описанию термомеханики твердых тел на наномасштабном уровне. | ||
− | |||
− | |||
− | |||
− | |||
==Математическая модель== | ==Математическая модель== | ||
Строка 25: | Строка 21: | ||
− | + | Где | |
− | |||
− | |||
− | |||
− | |||
− | |||
<math> | <math> | ||
− | + | D_i, a_i | |
− | < | + | <math> - параметры, которые подирались методом минимизации квадрата ошибки. |
− | |||
− | |||
− | |||
− | + | В качестве метода интегрирования был выбран метод Верле. Разностная схема выглядит соответствующим образом. | |
<math> | <math> | ||
− | + | V_{i+1} = V_{i} + w^2(U_{i+1}-2U_i+U_{i-1}) + \sum_{i=1}^{N} \phi(D_i,a_i) | |
− | < | + | U_{i+1} = U_{i} + V_{i+1} \Delta t |
+ | <math> | ||
− | + | Первоначальная задача состоит в том, чтобы найти параметры <math> D_i, a_i , N <math>, чтобы отклонения от закону Фурье было меньше 10%. Второстепенная заключается в том, чтобы найти оптимальные параметры с учетом количества операций (найти функционал J), который бы имел примерный вид: | |
<math> | <math> | ||
− | + | J(t) = \int_0^t r^2 e^2 + q^2 n N dt | |
− | + | <math> | |
− | < | ||
− | + | Где <math> r, q<math> - коэффициенты, <math> e^2 <math> квадрат ошибки. | |
==Исходный код программы== | ==Исходный код программы== | ||
Исходный код программы представлен где-то там | Исходный код программы представлен где-то там |
Версия 19:22, 24 января 2023
Дипломная работа
Исполнитель: Колбасов Алексей
Группа: 5030103/90101
Семестр: осень 2022
На макроскопическом уровне распространение тепла в большинстве материалов описывается законом Фурье, согласно которому тепловой поток пропорционален градиенту температуры. Являясь удобной математической моделью, закон Фурье приводит к ряду физических парадоксов, таких, как мгновенное распространение тепла. Заметные отклонения от закона Фурье наблюдаются на малых временных и пространственных масштабах. Кроме того известно, что в простейших дискретных системах, таких как одномерный гармонический кристалл (цепочка частиц, связанных линейными пружинами) распространение тепла не подчиняется закону Фурье. В настоящее время вопрос о распространения тепла в идеальных кристаллических системах остается открытым. Вместе с тем, данный вопрос приобретает особую актуальность, так как с развитием нанотехнологий расширяется возможность применения идеальных бездефектных кристаллов и их уникальных теплопроводящих свойств. Кроме того, рациональное описание процессов теплопереноса необходимо для замыкания уравнений механики дискретных сред и приложения их к описанию термомеханики твердых тел на наномасштабном уровне.
Математическая модель
С начальными условиями
Где
<math>
D_i, a_i
<math> - параметры, которые подирались методом минимизации квадрата ошибки.
В качестве метода интегрирования был выбран метод Верле. Разностная схема выглядит соответствующим образом.
<math>
V_{i+1} = V_{i} + w^2(U_{i+1}-2U_i+U_{i-1}) + \sum_{i=1}^{N} \phi(D_i,a_i) U_{i+1} = U_{i} + V_{i+1} \Delta t
<math>
Первоначальная задача состоит в том, чтобы найти параметры <math> D_i, a_i , N <math>, чтобы отклонения от закону Фурье было меньше 10%. Второстепенная заключается в том, чтобы найти оптимальные параметры с учетом количества операций (найти функционал J), который бы имел примерный вид:
<math>
J(t) = \int_0^t r^2 e^2 + q^2 n N dt
<math>
Где <math> r, q<math> - коэффициенты, <math> e^2 <math> квадрат ошибки.
Исходный код программы
Исходный код программы представлен где-то там