Курсовой проект "Моделирование удара шарика об стену" — различия между версиями
(→Математическая модель) |
|||
Строка 12: | Строка 12: | ||
==Математическая модель== | ==Математическая модель== | ||
− | |||
<math> | <math> | ||
− | m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2}+\underline{P}+\underline{F}_{Wall}\\ | + | m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2}+\underline{F}_{D_1}+\underline{F}_{D_2}+\underline{P}+\underline{F}_{Wall}\\ |
\underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=v_i^0~~~i=1,\ldots,n | \underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=v_i^0~~~i=1,\ldots,n | ||
</math> | </math> | ||
Строка 24: | Строка 23: | ||
\underline{F}_{R_1}, \underline{F}_{R_2}\\ | \underline{F}_{R_1}, \underline{F}_{R_2}\\ | ||
</math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно; | </math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно; | ||
+ | |||
+ | <math> | ||
+ | \underline{F}_{D_1},\underline{F}_{D_2}\\ | ||
+ | </math> - силы демпфирования пружины действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно; | ||
<math> | <math> | ||
Строка 36: | Строка 39: | ||
<math> | <math> | ||
− | \underline{F}_{R}= -(||\underline{r}_2-\underline{r}_1|| - l_0)k_R | + | \underline{F}_{R}= -(||\underline{r}_2-\underline{r}_1|| - l_0)k_R \frac{(\underline{r}_2-\underline{r}_1)}{||\underline{r}_2-\underline{r}_1||} |
</math>, где <math>k_R</math> - коэффициент жесткости пружины. | </math>, где <math>k_R</math> - коэффициент жесткости пружины. | ||
− | + | Сила демпфирования: | |
<math> | <math> | ||
− | \underline{ | + | \underline{F}_{D}= (\underline{v}_2-\underline{v}_1)\cdot\frac{\underline{r}_2-\underline{r}_1}{||\underline{r}_2-\underline{r}_1||}k_D\frac{(\underline{r}_2-\underline{r}_1)}{||\underline{r}_2-\underline{r}_1||} |
− | </math>, | + | </math>, где <math>k_D</math> - коэффициент демпфирования пружины. |
+ | |||
+ | Давление рассчитывается по следующей формуле: | ||
+ | |||
+ | <math>P = k(\frac{V_0}{V} - 1)</math> | ||
+ | |||
+ | Площадь шара вычисляется при помощи формулы площади Гаусса, позволяющей вычислить площадь произвольного многоугольника: | ||
+ | |||
+ | <math>\begin{align} | ||
+ | \mathbf{S} &= \frac{1}{2} \left| \sum_{i=1}^{n-1} x_i y_{i+1} + x_n y_1 - \sum_{i=1}^{n-1} x_{i+1} y_i - x_1 y_n \right| = \\ | ||
+ | &= \frac{1}{2} |x_1 y_2 + x_2 y_3 + \dots + x_{n-1} y_n + x_n y_1 - x_2 y_1 - x_3 y_2 - \dots - x_n y_{n-1} - x_1 y_n|, | ||
+ | \end{align}</math> | ||
− | Взаимодействие | + | Взаимодействие частиц со стенкой реализовано с помощью потенциала Леннарда-Джонса: |
<math> | <math> | ||
− | + | U(r) = 4\varepsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right], | |
− | + | </math> | |
− | |||
− | |||
==Реализация модели== | ==Реализация модели== | ||
Визуализацию и исходный код: https://github.com/igorlaryush/discrete_mechanics_course_project | Визуализацию и исходный код: https://github.com/igorlaryush/discrete_mechanics_course_project |
Версия 10:16, 20 января 2022
Курсовой проект по Механике дискретных сред
Исполнитель: Грешников Павел
Группа: 5030103/80101
Семестр: осень 2021
Постановка задачи
Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.
Математическая модель
где
- силы упругости действующие на -ую частицу со стороны и соответственно;
- силы демпфирования пружины действующие на -ую частицу со стороны и соответственно;
- давление создаваемое газом;
- сила взаимодействия между воздушным шаром и стеной;
Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле:
, где - коэффициент жесткости пружины.
Сила демпфирования:
, где - коэффициент демпфирования пружины.
Давление рассчитывается по следующей формуле:
Площадь шара вычисляется при помощи формулы площади Гаусса, позволяющей вычислить площадь произвольного многоугольника:
Взаимодействие частиц со стенкой реализовано с помощью потенциала Леннарда-Джонса:
Реализация модели
Визуализацию и исходный код: https://github.com/igorlaryush/discrete_mechanics_course_project