Моделирование удара шарика об стенку Эссам — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Математическая модель)
(Математическая модель)
Строка 33: Строка 33:
 
</math> - сила взаимодействия между воздушным шаром и стеной;
 
</math> - сила взаимодействия между воздушным шаром и стеной;
  
Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле:
+
Сила упругости, действующая на частицу k со стороны частицы k+1, вычисляется по следующей формуле:
  
 
<math>
 
<math>
   \underline{F}_{R}= -(||\underline{r}_2-\underline{r}_1|| - l_0)k_R
+
   \underline{F}_{R}= -(||\underline{R}_k-\underline{R}_k+1|| - l_0)k_R
</math>,  где <math>k_R</math> - коэффициент жесткости пружины.
+
</math>,  где <math>l_0</math> - начальная длина пружины соединяющей частицу k и k+1.
  
 
Давление:
 
Давление:

Версия 07:44, 19 января 2022

Курсовой проект по Механике дискретных сред

Исполнитель: Эссам Жоан

Группа: 5030103/80101

Семестр: осень 2021

Постановка задачи

Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.

Математическая модель

Уравнение движения для каждой из материальных точек записывается следующим образом:

[math] m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2}+\underline{P}+\underline{F}_{Wall}\\ \underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=\underline{v}_i^0~~~i=1,\ldots,n [/math]


где [math] \underline{F}_{R_1}, \underline{F}_{R_2}\\ [/math] - силы упругости действующие на [math]i[/math]-ую частицу со стороны [math]i-1[/math] и [math]i+1[/math] соответственно;

[math] \underline{P} [/math] - давление создаваемое газом;

[math] \underline{F}_{Wall}\\ [/math] - сила взаимодействия между воздушным шаром и стеной;

Сила упругости, действующая на частицу k со стороны частицы k+1, вычисляется по следующей формуле:

[math] \underline{F}_{R}= -(||\underline{R}_k-\underline{R}_k+1|| - l_0)k_R [/math], где [math]l_0[/math] - начальная длина пружины соединяющей частицу k и k+1.

Давление:

[math] \underline{P}=P \underline{n} [/math], где [math] P [/math] - модуль давления, [math] \underline{n}[/math] - нормаль к пружине, направленная наружу.

Взаимодействие шара со стеной:

[math] \underline{F}_{Wall}=\frac{12D}{a}[(\frac{a}{r})^{13}-(\frac{a}{r})^7] [/math]