Предлагаемые темы исследований — различия между версиями
Kate (обсуждение | вклад) |
|||
Строка 7: | Строка 7: | ||
Заинтересовавшимся: [mailto:info@teormeh.net свяжитесь с нами]! | Заинтересовавшимся: [mailto:info@teormeh.net свяжитесь с нами]! | ||
+ | == Список задач, предлагаемых для студентов == | ||
+ | [[Гаврилов Сергей Николаевич]] | ||
+ | * нестационарные волны | ||
+ | * локализация линейных волн | ||
+ | * задачи о фазовых превращениях в динамической постановке | ||
+ | * нестационарные задачи баллистической теплопроводности | ||
+ | |||
+ | [[Руколайне Сергей Анатольевич]] | ||
+ | * Восстановление фазы электромагнитной волны из амплитуды ее преобразования Фурье. | ||
+ | В последние годы появилась возможность создания источников фемтосекундных (от десятков аттосекунд до сотен фемтосекунд) импульсов когерентного рентгеновского излучения. Это открывает возможности восстановления трехмерной атомной структуры наночастиц (как кристаллических, так и некристаллических) при помощи измерения интенсивности (амплитуды) прошедших через частицу рентгеновских импульсов и последующего восстановления распределения плотности электронов в частице (задача томографии). Первым шагом решения этой задачи является восстановление фазы прошедшей через частицу электромагнитной волны по амплитуде ее преобразования Фурье (дифракция Фраунгофера), поскольку измерить можно только интенсивность (амплитуду) волны, информация о фазе при этом теряется. Несмотря на то, что задача эта не новая (возникает в самых различных областях), до сих пор не существует достаточно эффективного метода ее решения. Существующие способы решения этой задачи в значительной степени эвристические. В НИР предполагается знакомство с некоторыми существующими методами решения этой задачи, их реализация и сравнительный анализ их эффективности применительно к задаче восстановления распределения плотности электронов. (Это лишь промежуточная задача. Целью, которая не является задачей НИР, является восстановление атомной структуры реальных наночастиц.) | ||
+ | |||
+ | [http://www.pdmi.ras.ru/~elgreco Грекова Елена Федоровна] | ||
+ | Задачи связаны общей тематикой: распространение волн в акустических метаматериалах. Акустические метаматериалы - это среды, для которых еще в области применимости континуальных моделей существуют запрещенные зоны частот или падающие участки дисперсионных кривых. В этих зонах волны распространяются аномально: возможна локализация или аномальное преломление. Такие материалы могут использоваться для управления лучами, для маскировки, редуцирования шумов в данных зонах частот. | ||
+ | Недавно найден целый класс упругих сложных сред, представляющих собой акустические метаматериалы. Они представляют собой "несущий континуум" вкрапленным в него в каждой точке "распределенным динамическим гасителем". Частицы "гасителя" непосредственно не соединены между собой (среда, содержащая такие тела-точки, называется редуцированной), за счет этого некоторые типы волн могут распространяться аномально вблизи его парциальной частоты. Оба континуума могут быть различной (сложной) природы, описываться как трансляциями, так и поворотами (в последнем случае имеем дело с так называемыми средами Коссера). При помощи внешнего воздействия мы можем менять параметры частотных зон, то есть среда будет "умным акустическим метаматериалом". Предварительные результаты показывают, что введение вязкости в таком материале может изменить не только параметры рабочих зон, но и их тип. | ||
+ | Предлагаются следующие темы исследований, связанные этой идеей: | ||
+ | * управление параметрами линейного редуцированного гироконтинуума (среды Кельвина - континуума Коссера, частицы которого обладают конечным динамическим спином) за счет внешнего следящего момента и скорости собственного вращения частиц. Здесь возможна аналогия с некоторыми магнитоупругими материалами | ||
+ | * распространение волн в линейном редуцированном анизотропном гироконтинууме с перевязкой между волной растяжения-сжатия и волной сдвига-вращения | ||
+ | * распространение волн в вязкоупругой редуцированной сложной среде без гироскопии. Будет ли она акустическим метаматериалом, при каких условиях? | ||
+ | * распространение волн в простейшем вязкоупругом гироконтинууме | ||
+ | * распространение волн в линейной редуцированной анизотропной среде Коссера с малой произвольной перевязкой между волной растяжения-сжатия и волной сдвига-вращения | ||
+ | |||
+ | [[Лобода Ольга Сергеевна]] | ||
+ | * Биомеханическое моделирование работы сердца человека в здоровом состоянии и при различных патологиях. Моделирование процессов, происходящих после устранения патологий. | ||
+ | * Биомеханическое моделирование протезирования в ортопедии. | ||
+ | * Создание моделей для цифровой печати различных органов человека на основе компьютерной томографии. | ||
+ | |||
+ | [[Бабенков Михаил Борисович]] | ||
+ | |||
+ | * Биомеханика полостных органов. Задачи транспорта вязких жидкостей в упругих оболочках. Актуальны для медицины, нефтехимической и пищевой промышленности. | ||
+ | * Ауксетики и метаматериалы. Создание материалов на 3D принтере с программируемой реакцией на внешние воздействия для решения инженерных задач (настраеваемые поверхности отражателей и диффузоров, искусственные мышцы). | ||
+ | * Материалы с памятью формы. Моделирование поведения стержней, обладающих памятью формы при их нагружении и нагреве. | ||
+ | |||
+ | [[Мурачёв Андрей Сергеевич]] | ||
+ | * Исследование процессов формирования планет Солнечной системы и экзопланет, а также систем «планета-спутник». | ||
+ | * Исследование динамики полёта искусственных спутников планет с электродинамическими тросами, солнечными парусами. | ||
+ | * Разработка проектов исследовательских миссий к планетам и спутникам Солнечной системы. | ||
+ | * Эксперименты в области машинного обучения, разработка новых подходов обучения машин. | ||
+ | * Создание приложений с применением машинного обучения (с использованием известных подходов). | ||
+ | |||
+ | [[Мущак Никита Дмитриевич]] | ||
+ | *Автоматическое тестирование планарной модели развития трещины ГРП. | ||
+ | Предлагается разработать алгоритм валидации результатов расчётов планарной модели распространения трещины гидроразрыва пласта. Алгоритм реализуется в виде модуля тестирования с поддержкой функций обратного вызова, что позволит упростить распараллеливание расчётных задач. При тестировании проверяются поля напряжений, давление жидкости гидроразрыва и раскрытие трещины. | ||
+ | |||
+ | [[Старобинский Егор Борисович]] | ||
+ | |||
+ | * Реализация планарной модели распространения трещины гидроразрыва (C++). Проект по разработке расчётного модуля, способного спрогнозировать эволюцию трещины ГРП под действием переменной закачки неньютоновской жидкости. Требуется реализация имеющейся физико-математической модели в виде кросс-платформенного кода на C++11. Расчёт 2-3 часов роста трещины должен занимать около 5 минут. | ||
+ | Может служить темой для магистерской ВКР. | ||
+ | Один или два человека, реально толковых. | ||
+ | |||
+ | * Моделирование движения яхт и катеров в сложных сценарных и погодных условиях. Разнообразные задачи от Клуба Технического Яхтинга СПбПУ в области проектирования катеров, управления беспилотными судами и улучшения гоночных показателей яхтсменов. Можно получить навыки по схемотехнике, микроконтроллерам, Python3, C, C++11, ANSYS (LS-DYNA), SolidWorks, Mathematica. | ||
+ | Один человек, лучше дипломник. | ||
+ | |||
+ | [[Шварёв Николай Григорьевич]] | ||
+ | |||
+ | * Проведение расчетов в модуле генерации микросейсмических событий при распространении трещины ГРП. | ||
+ | Требуется проведение тестов с изменением различных параметров и определение зависимостей в существующем модуле генерации микросейсмических событий. | ||
+ | |||
+ | * Определение и задание интегральных характеристик генерируемых микросейсмических событий. Требуется провести литературный обзор, внедрить найденную информацию в существующий модуль генерации микросейсмических событий. Необходимо умение программировать на C++. | ||
+ | |||
+ | * Изменение используемых численных методов в модуле генерации микросейсмических событий. Требуется провести литературный обзор, определить и обновить используемые численные методы в существующем модуле генерации микросейсмических событий. Необходимо знание численных методов. | ||
+ | |||
+ | * Создание системы наглядной визуализации и запуска модуля генерации микросейсмических событий. Требуется создать удобную для использования оболочку задания входных параметров программы и отрисовки полученных результатов. Необходимо умение программировать на Qt / Python. | ||
+ | |||
+ | [[Краева Светлана Олеговна]] | ||
+ | |||
+ | * Анализ технологий прокси-моделирования пластового давления и проводимости пласта. Разработка прототипа прокси-модели пластового давления и проводимости. Анализ эффективности модели. Данная работа может стать основой для магистерской ВКР. | ||
+ | |||
+ | * Разработка модели переноса и оседания проппанта в плоской ячейке. Реализация алгоритма на языке С++. Необходимо знание английского языка. | ||
+ | |||
+ | |||
+ | <!--- | ||
== Список задач, относящихся к текущим проектам == | == Список задач, относящихся к текущим проектам == | ||
Строка 294: | Строка 365: | ||
|- | |- | ||
|} | |} | ||
− | + | ---> | |
== См. также == | == См. также == | ||
Версия 13:45, 13 сентября 2019
Общая информация
Ниже приведены возможные темы исследований, в которых может принять участие любой желающий вне зависимости от возраста, образования и т.п. В частности, исследования могут проводиться как школьниками, так и студентами. Данные исследования могут составить основу бакалаврской, магистерской или кандидатской диссертации, а также позволяют принять участие в научных и хоздоговорных проектах, выполняемых кафедрой "Теоретическая механика" СПбГПУ.
Практически все темы исследований сочетают в себе как фундаментальные исследования, так и получение прикладных результатов.
Заинтересовавшимся: свяжитесь с нами!
Список задач, предлагаемых для студентов
- нестационарные волны
- локализация линейных волн
- задачи о фазовых превращениях в динамической постановке
- нестационарные задачи баллистической теплопроводности
- Восстановление фазы электромагнитной волны из амплитуды ее преобразования Фурье.
В последние годы появилась возможность создания источников фемтосекундных (от десятков аттосекунд до сотен фемтосекунд) импульсов когерентного рентгеновского излучения. Это открывает возможности восстановления трехмерной атомной структуры наночастиц (как кристаллических, так и некристаллических) при помощи измерения интенсивности (амплитуды) прошедших через частицу рентгеновских импульсов и последующего восстановления распределения плотности электронов в частице (задача томографии). Первым шагом решения этой задачи является восстановление фазы прошедшей через частицу электромагнитной волны по амплитуде ее преобразования Фурье (дифракция Фраунгофера), поскольку измерить можно только интенсивность (амплитуду) волны, информация о фазе при этом теряется. Несмотря на то, что задача эта не новая (возникает в самых различных областях), до сих пор не существует достаточно эффективного метода ее решения. Существующие способы решения этой задачи в значительной степени эвристические. В НИР предполагается знакомство с некоторыми существующими методами решения этой задачи, их реализация и сравнительный анализ их эффективности применительно к задаче восстановления распределения плотности электронов. (Это лишь промежуточная задача. Целью, которая не является задачей НИР, является восстановление атомной структуры реальных наночастиц.)
Грекова Елена Федоровна Задачи связаны общей тематикой: распространение волн в акустических метаматериалах. Акустические метаматериалы - это среды, для которых еще в области применимости континуальных моделей существуют запрещенные зоны частот или падающие участки дисперсионных кривых. В этих зонах волны распространяются аномально: возможна локализация или аномальное преломление. Такие материалы могут использоваться для управления лучами, для маскировки, редуцирования шумов в данных зонах частот. Недавно найден целый класс упругих сложных сред, представляющих собой акустические метаматериалы. Они представляют собой "несущий континуум" вкрапленным в него в каждой точке "распределенным динамическим гасителем". Частицы "гасителя" непосредственно не соединены между собой (среда, содержащая такие тела-точки, называется редуцированной), за счет этого некоторые типы волн могут распространяться аномально вблизи его парциальной частоты. Оба континуума могут быть различной (сложной) природы, описываться как трансляциями, так и поворотами (в последнем случае имеем дело с так называемыми средами Коссера). При помощи внешнего воздействия мы можем менять параметры частотных зон, то есть среда будет "умным акустическим метаматериалом". Предварительные результаты показывают, что введение вязкости в таком материале может изменить не только параметры рабочих зон, но и их тип. Предлагаются следующие темы исследований, связанные этой идеей:
- управление параметрами линейного редуцированного гироконтинуума (среды Кельвина - континуума Коссера, частицы которого обладают конечным динамическим спином) за счет внешнего следящего момента и скорости собственного вращения частиц. Здесь возможна аналогия с некоторыми магнитоупругими материалами
- распространение волн в линейном редуцированном анизотропном гироконтинууме с перевязкой между волной растяжения-сжатия и волной сдвига-вращения
- распространение волн в вязкоупругой редуцированной сложной среде без гироскопии. Будет ли она акустическим метаматериалом, при каких условиях?
- распространение волн в простейшем вязкоупругом гироконтинууме
- распространение волн в линейной редуцированной анизотропной среде Коссера с малой произвольной перевязкой между волной растяжения-сжатия и волной сдвига-вращения
- Биомеханическое моделирование работы сердца человека в здоровом состоянии и при различных патологиях. Моделирование процессов, происходящих после устранения патологий.
- Биомеханическое моделирование протезирования в ортопедии.
- Создание моделей для цифровой печати различных органов человека на основе компьютерной томографии.
- Биомеханика полостных органов. Задачи транспорта вязких жидкостей в упругих оболочках. Актуальны для медицины, нефтехимической и пищевой промышленности.
- Ауксетики и метаматериалы. Создание материалов на 3D принтере с программируемой реакцией на внешние воздействия для решения инженерных задач (настраеваемые поверхности отражателей и диффузоров, искусственные мышцы).
- Материалы с памятью формы. Моделирование поведения стержней, обладающих памятью формы при их нагружении и нагреве.
- Исследование процессов формирования планет Солнечной системы и экзопланет, а также систем «планета-спутник».
- Исследование динамики полёта искусственных спутников планет с электродинамическими тросами, солнечными парусами.
- Разработка проектов исследовательских миссий к планетам и спутникам Солнечной системы.
- Эксперименты в области машинного обучения, разработка новых подходов обучения машин.
- Создание приложений с применением машинного обучения (с использованием известных подходов).
- Автоматическое тестирование планарной модели развития трещины ГРП.
Предлагается разработать алгоритм валидации результатов расчётов планарной модели распространения трещины гидроразрыва пласта. Алгоритм реализуется в виде модуля тестирования с поддержкой функций обратного вызова, что позволит упростить распараллеливание расчётных задач. При тестировании проверяются поля напряжений, давление жидкости гидроразрыва и раскрытие трещины.
- Реализация планарной модели распространения трещины гидроразрыва (C++). Проект по разработке расчётного модуля, способного спрогнозировать эволюцию трещины ГРП под действием переменной закачки неньютоновской жидкости. Требуется реализация имеющейся физико-математической модели в виде кросс-платформенного кода на C++11. Расчёт 2-3 часов роста трещины должен занимать около 5 минут.
Может служить темой для магистерской ВКР. Один или два человека, реально толковых.
- Моделирование движения яхт и катеров в сложных сценарных и погодных условиях. Разнообразные задачи от Клуба Технического Яхтинга СПбПУ в области проектирования катеров, управления беспилотными судами и улучшения гоночных показателей яхтсменов. Можно получить навыки по схемотехнике, микроконтроллерам, Python3, C, C++11, ANSYS (LS-DYNA), SolidWorks, Mathematica.
Один человек, лучше дипломник.
- Проведение расчетов в модуле генерации микросейсмических событий при распространении трещины ГРП.
Требуется проведение тестов с изменением различных параметров и определение зависимостей в существующем модуле генерации микросейсмических событий.
- Определение и задание интегральных характеристик генерируемых микросейсмических событий. Требуется провести литературный обзор, внедрить найденную информацию в существующий модуль генерации микросейсмических событий. Необходимо умение программировать на C++.
- Изменение используемых численных методов в модуле генерации микросейсмических событий. Требуется провести литературный обзор, определить и обновить используемые численные методы в существующем модуле генерации микросейсмических событий. Необходимо знание численных методов.
- Создание системы наглядной визуализации и запуска модуля генерации микросейсмических событий. Требуется создать удобную для использования оболочку задания входных параметров программы и отрисовки полученных результатов. Необходимо умение программировать на Qt / Python.
- Анализ технологий прокси-моделирования пластового давления и проводимости пласта. Разработка прототипа прокси-модели пластового давления и проводимости. Анализ эффективности модели. Данная работа может стать основой для магистерской ВКР.
- Разработка модели переноса и оседания проппанта в плоской ячейке. Реализация алгоритма на языке С++. Необходимо знание английского языка.