Колебания одномерной цепочки — различия между версиями
Loban9614 (обсуждение | вклад) (→Анализ результатов) |
Loban9614 (обсуждение | вклад) (→Постановка задачи) |
||
Строка 10: | Строка 10: | ||
===Постановка задачи=== | ===Постановка задачи=== | ||
− | Рассматривается цепочка из N материальных частиц P0, P1, ... Pn, ..., PN–1, каждая из которых обладает одинаковой массой m. Частицы соединены | + | Рассматривается цепочка из N материальных частиц P0, P1, ... Pn, ..., PN–1, каждая из которых обладает одинаковой массой m. Частицы соединены пружинками. Рассматриваются продольные колебания образующих цепочку частиц, при условии, что взаимодействие задается с помощью потенциала Леннарда-Джонса. |
Период одного колебания: <math> {T}_{o} = 2{\pi}\sqrt\frac {m}{C} </math> | Период одного колебания: <math> {T}_{o} = 2{\pi}\sqrt\frac {m}{C} </math> | ||
− | |||
− | |||
===Решение задачи=== | ===Решение задачи=== |
Версия 16:02, 4 февраля 2019
Курсовые работы 2018-2019 учебного года > Колебания одномерной цепочкиКурсовой проект по Механике дискретных сред
Исполнитель: Лобанов Илья
Группа: 43604/1
Семестр: осень 2018
Постановка задачи
Рассматривается цепочка из N материальных частиц P0, P1, ... Pn, ..., PN–1, каждая из которых обладает одинаковой массой m. Частицы соединены пружинками. Рассматриваются продольные колебания образующих цепочку частиц, при условии, что взаимодействие задается с помощью потенциала Леннарда-Джонса.
Период одного колебания:
Решение задачи
Рассмотрим модель колебаний одномерной многоатомной цепочки равных масс. Пусть в этой цепочке находится N атомов. Обозначим смещение n-го атома un, а атома, отстоящего от него на p узлов, – un+p. Примем в качестве положительных смещения атомов вправо от положения равновесия, а отрицательных – влево.
Каждый атом смещается только вдоль цепочки, что следует из требования одномерности модели. Пусть атомы связаны между собой упругой силой, соответствующей потенциалу Леннарда-Джонса с коэффициентом упругости С.
Найдем уравнение движения n-го и n+1-го атома в цепи. В равновесном положении силы, действующие на атомы, равны нулю. При произвольных смещениях на каждый n-й атом будет действовать сила со стороны соседних атомов. В соответствии с элементарным законом Гука эту силу можно представить в виде:
В качестве начальных условий заданы случайные начальные скорости таким образом, что средняя скорость всех частиц равна 0. Перемещения всех частиц в начальный момент времени равны нулю. Также заданы периодические граничные условия на перемещения.
Анализ результатов