Исследование уравнения Рэлея — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Презентация) |
(→Описание задачи) |
||
Строка 2: | Строка 2: | ||
== Описание задачи == | == Описание задачи == | ||
Уравнение Рэлея(рис.1) - дифференциальное уравнение 2 порядка,которое описывает нелинейную систему с одной степенью свободы, | Уравнение Рэлея(рис.1) - дифференциальное уравнение 2 порядка,которое описывает нелинейную систему с одной степенью свободы, | ||
− | в которой возможны автоколебания,где λ – параметр колебательной системы.Автоколебания —незатухающие колебания, поддерживаемые внеш. источниками энергии, в нелинейной диссипативной системе | + | в которой возможны автоколебания,где λ – параметр колебательной системы.Автоколебания —незатухающие колебания, поддерживаемые внеш. источниками энергии, в нелинейной диссипативной системе. |
Задачи : | Задачи : |
Версия 00:34, 5 июня 2017
Описание задачи
Уравнение Рэлея(рис.1) - дифференциальное уравнение 2 порядка,которое описывает нелинейную систему с одной степенью свободы, в которой возможны автоколебания,где λ – параметр колебательной системы.Автоколебания —незатухающие колебания, поддерживаемые внеш. источниками энергии, в нелинейной диссипативной системе.
Задачи :
1.Проанализировать уравнение с помощью метода Ван дер Поля при малых значениях параметра.
2.Построить фазовые траектории.
3. Понять, как влияет величина параметра на характер колебаний.
Презентация
Программа
Построение фазовых портретов в Matlab (скачать)