Метод Барнса-Хата — различия между версиями
Денис (обсуждение | вклад) (→Дополнение к этапу 2-Б) |
Денис (обсуждение | вклад) |
||
Строка 44: | Строка 44: | ||
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Alexandrov_S_D/Barns_Hat/Balls_v4_release.html |width=650|height=650 |border=0 }} | {{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Alexandrov_S_D/Barns_Hat/Balls_v4_release.html |width=650|height=650 |border=0 }} | ||
+ | Разработчик программы: [[Цветков Денис]], при разработке программы были использованы материалы диссертации [[Ле-Захаров Александр|Александра Ле-Захарова]]. | ||
+ | Материал данной страницы скомпонован [[Александров Сергей|Сергеем Александровым]]. | ||
= См. также = | = См. также = | ||
− | + | * [[Медиа: Lezakharov_disser_2010.pdf |Материал диссертации]] (Автор [[Ле-Захаров Александр|Александр Ле-Захаров]]) | |
− | * [[Медиа: Lezakharov_disser_2010.pdf |Материал диссертации]] (Автор [[Ле-Захаров Александр|Ле-Захаров | + | * [[Проект "Земля - Луна"]] |
− | |||
='''Ссылки'''= | ='''Ссылки'''= |
Версия 12:05, 13 сентября 2016
Содержание
Аннотация
Иерархические методы наиболее неприхотливы к различным особенностям физической модели, в частности к скачкам в распределении частиц. На доступных на сегодняшний день аппаратных ресурсах они позволяют проводить расчеты для систем с числом частиц до
, в зависимости от конкретной задачи. Существует, собственно, всего два классических иерархических алгоритма быстрый мультипольный метод и алгоритм Барнса-Хата. Все остальные в той или иной степени являются их модификациями и комбинациями с другими методами расчета сил.Описание метода
Первый этап
Объединение частиц в древовидную структуру данных с учетом близости их расположения друг к другу. Существуют реализации с построением дерева путем объединения групп частиц (ближайшие частицы объединяются в пары, образуя узлы, затем пары также объединяются между собой и т.д.). Однако обычно это делается просто иерархической декомпозицией пространства на кубические ячейки. Для двумерного случая пример такого разбиения показан на рисунке справа. Ячейки в нем соответствуют узлам дерева, частицы в них — листьям.
Второй этап
Для подсчета результирующей силы, действующей на какую-либо произвольно взятую частицу, совершается обход дерева от корня. При достижении очередного узла дальнейший расчет проходит по следующей схеме:
А) если узел терминальный, то к результату просто добавляется сила, действующая со стороны этого узла;
Б) если узел не терминальный, то для потенциала, создаваемого частицами данного узла, может быть вычислена аппроксимация. С помощью критерия допустимости происходит проверка точности аппроксимации:
- если критерий удовлетворен, то аппроксимация вычисляется, и на этом обход данной ветки дерева завершается;
- если нет, то этап 2 рекурсивно повторяется для всех дочерних узлов.
Третий этап
Производится интегрирование уравнений движения и пересчет скоростей и координат частиц.
Дополнение к этапу 2-Б
Критерий принятия решения в пункте 2-Б в литературе обычно называется критерием допустимости (Multipole Acceptance Criteria (MAC)). Почти всегда он сводится к тому, что для частиц, находящихся близко, происходит прямое вычисление сил, а для удаленных частиц используется аппроксимация. Обычно МАС описывается при помощи величины
1) Barnes-Hut (BH) MAC: , где - расстояние от частицы до центра масс ячейки, - размер ячейки.
2) Min-distance (MD) MAC: , где - расстояние от частицы до границы ячейки, - размер ячейки.
3) Bmax MAC: , где - максимальное расстояние от центра масс ячейки до ее границы, - расстояние от частицы до центра масс ячейки.
Если условие МАС выполняется, то мультипольная аппроксимация в данном случае считается допустимой.
Программа
В данной программе используется критерий допустимости Mid-distance.
Комментарий к программе:
- Левой клавишей мыши добавляются частицы
- Правой клавишей мыши удаляются частицы
Разработчик программы: Цветков Денис, при разработке программы были использованы материалы диссертации Александра Ле-Захарова. Материал данной страницы скомпонован Сергеем Александровым.
См. также
Ссылки