Физически линейная квадратная решетка — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Ссылки исправлены на внутренние, а не внешние)
(изменён текст)
Строка 19: Строка 19:
  
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/FomichevaM/index.html |width=1200|height=1600 |border=0 }}
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/FomichevaM/index.html |width=1200|height=1600 |border=0 }}
==Ссылка==   
+
==Ссылки==   
 
*Автор проекта: [[ Фомичева Мария]]
 
*Автор проекта: [[ Фомичева Мария]]
 
*[[Виртуальная лаборатория]]
 
*[[Виртуальная лаборатория]]
*Вы можете посмотреть код проекта здесь:[https://bitbucket.org/mfomicheva/projectoftheoreticalmechanics Код проекта]
+
*Вы можете посмотреть код проекта на bitbucket.org: [https://bitbucket.org/mfomicheva/projectoftheoreticalmechanics Код проекта]

Версия 15:52, 14 июня 2016

Виртуальная лаборатория>Физически линейная квадратная решетка

Постановка задачи

В данной задаче рассматривается квадратная решётка, состоящая из частиц одинаковых масс. Эти частицы связаны между собой линейными пружинками одинаковой жёсткости. Уравнение движения имеет вид:

[math] \ddot{\bf u}_{n} = {\omega}_{0}^2({\bf u}_{n+1}-2{\bf u}_{n+1} + {\bf u}_{n-1}), [/math]


где [math] {\bf u}[/math] - перемещение, [math]{\omega}_{0} =\sqrt\frac {\bf c}{\bf m} [/math], [math] {\bf c}[/math] - жёсткость пружинок, [math] {\bf m}[/math] - масса частиц.

Данное дифференциальное уравнение решалось методом численного интегрирования Верле

Ниже приведены график изменения энергии системы и график изменения среднего квадрата скоростей. На первом графике можно пронаблюдать выравнивание кинетической и потенциальной энергии системы. При большом количестве частиц (N > 100) мы можем увидеть, что график энергий образует функцию Бесселя.

Визуализация

Ссылки