Периодические граничные условия — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Результаты)
(Результаты)
Строка 45: Строка 45:
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tenitskaya/OneBall/OneBall.html |width=1420 |height=500|border=0 }}
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tenitskaya/OneBall/OneBall.html |width=1420 |height=500|border=0 }}
 
Скачать [[Медиа:OneBall.zip|OneBall.zip]].
 
Скачать [[Медиа:OneBall.zip|OneBall.zip]].
 
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tenitskaya/TwoBalls/TwoBalls.html |width=1400|height=500|border=0 }}
 
Скачать [[Медиа:TwoBalls.zip|TwoBalls.zip]].
 

Версия 21:52, 4 февраля 2016

Виртуальная лаборатория>Периодические граничные условия

Курсовой проект по механике дискретных сред

Краткое описание

Метод периодических граничных условий был разработан для решения задач теории жидкостей и плотных газов. Он состоит в том,что вокруг расчетной области строятся ее «образы» с актуальным положением частиц. И частицы «реальной» области взаимодействуют с частицами в «образе», а если частица пересекает границу расчетной области, она появляется с другой стороны.
В теореме Нетер утверждается, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения:
  • однородности времени соответствует закон сохранения энергии,
  • однородности пространства соответствует закон сохранения импульса,
  • изотропии пространства соответствует закон сохранения момента импульса,
  • калибровочной симметрии соответствует закон сохранения электрического заряда и т. д.
Но для классической системы частиц с периодическими условиями сохранение момента импульса нарушается. Этот эффект наглядно проиллюстрирован в данной курсовой работе.

Цель проекта

  • Визуализация системы частиц с периодическими граничными условиями.
  • Построение графиков зависимости кинетического момента от времени для одной частицы, двух частиц, многих частиц.

Математическая модель

Граничные условия:

если [math]x \gt w[/math], то [math]x = x - w[/math]

если [math] x \lt 0 [/math], то [math] x = x + w [/math]

если [math] y \gt h [/math], то [math] y = y - h [/math]

если [math] y \lt 0 [/math], то [math] y = y + h [/math]

Где x и у - это координаты частицы, а w и h - ширина и длина окна соответственно.

Кинетический момент вычисляется по формуле: [math]L(t) = \sum_{i\in\wedge(t)} r_i\times mV_i [/math]

Результаты

Скачать OneBall.zip.