Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Ян (обсуждение | вклад) (→Результаты) |
(→Постановка задачи) |
||
Строка 8: | Строка 8: | ||
\end{cases}</math> | \end{cases}</math> | ||
и начальным распределением температуры | и начальным распределением температуры | ||
− | :<math>T(x,0) = T0(x)= | + | :<math>T(x,0) = T0(x)=10</math> |
==Реализация== | ==Реализация== |
Версия 10:53, 15 января 2016
Содержание
Постановка задачи
Решается однородное уравнение теплопроводности на промежутке
С граничными условиями
и начальным распределением температуры
Реализация
Явная схема с перешагиванием
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде:
Введем сетку
с шагом разбиения . Шаг по времени назовем Построим явную трехслойную схему:Где,
— значение температуры в -ом узле. Так как схема трехслойная, то вначале надо иметь уже вычисленные значения функции на первом и нулевом слоях.При n=0 значения функции
определяются из начальных условий. При значения функции вычисляется по двухслойной схеме:При
, значения функции определяются из краевых условий.Компьютерная реализация
Скачать программу File:HeatEq_Yan.zip
Результаты
- При малом числе узлов в сетки, для данной многопроцессовой реализации, время расчета увеличивается.
- При увеличении числа процессов время расчета существенно сокращается, что делает целесообразным использование данного метода.