Периодические граничные условия — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(top)
Строка 32: Строка 32:
  
 
<math>L(t) = \sum_{i\in\wedge(t)} r_i\times mV_i </math>
 
<math>L(t) = \sum_{i\in\wedge(t)} r_i\times mV_i </math>
 +
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tenitskaya/One/dingas.html |width=1000 |height=640 |border=0 }}
 +
 +
 +
 +
Скачать [[Медиа:One.zip|One.zip]].
  
 
== Результаты программы ==
 
== Результаты программы ==

Версия 13:19, 22 декабря 2015

Виртуальная лаборатория>Периодические граничные условия

Метод периодических граничных условий был разработан для решения задач теории жидкостей и плотных газов. Он состоит в том,что вокруг расчетной области строятся ее «образы» с актуальным положением частиц. И частицы «реальной» области взаимодействуют с частицами в «образе». А если частица пересекает границу расчетной области, она появляется с другой стороны. В теореме Нетер утверждается, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения:
однородности времени соответствует закон сохранения энергии,
однородности пространства соответствует закон сохранения импульса,
изотропии пространства соответствует закон сохранения момента импульса,
калибровочной симметрии соответствует закон сохранения электрического заряда и т. д.
Но для классической системы частиц с периодическими условиями сохранение момента импульса нарушается.

Цель работы:

  • Визуализация системы частиц с периодическими граничными условиями.
  • Построение графиков зависимости кинетического момента от времени для одной частицы, двух частиц, многих частиц.

Граничные условия:

если [math] x \gt w [/math], то [math] x = x - w [/math]

если [math] x \lt 0 [/math], то [math] x = x + w [/math]

если [math] y \gt h [/math], то [math] y = y - h [/math]

если [math] y \lt 0 [/math], то [math] y = y + h [/math]

Где x и у - это координаты частицы, а w и h - ширина и длина окна соответственно.

Кинетический момент вычисляется по формуле:

[math]L(t) = \sum_{i\in\wedge(t)} r_i\times mV_i [/math]


Скачать One.zip.

Результаты программы