Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Ян (обсуждение | вклад) |
Ян (обсуждение | вклад) |
||
Строка 18: | Строка 18: | ||
:<math>\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}</math> | :<math>\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}</math> | ||
− | Введем равномерную сетку <math>0 < x_i < | + | Введем равномерную сетку <math>0 < x_i < L</math> с шагом разбиения <math>Δx</math>. Шаг по времени назовем <math>Δt</math> |
Построим явную конечно-разностную схему: | Построим явную конечно-разностную схему: | ||
:<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> | :<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> | ||
Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле. | Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле. | ||
+ | |||
==Компьютерная реализация== | ==Компьютерная реализация== | ||
Строка 27: | Строка 28: | ||
+ | ==Результаты== | ||
+ | [[File:Безымянный1.jpg|thumb|720px|left]] | ||
+ | [[File:Безымянный.jpg|thumb|720px|center]] | ||
− | + | *При уменьшении числа узлов в сетки, для данной многопроцессорной реализации, время расчета увеличивается. | |
+ | *При увеличении числа процессов время расчета существенно сокращается, что делает целесообразным использование данного метода. | ||
==Полезные ссылки== | ==Полезные ссылки== | ||
[https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Уравнение теплопроводности] | [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Уравнение теплопроводности] |
Версия 10:49, 10 декабря 2015
Содержание
Постановка задачи
Решается однородное уравнение теплопроводности на промежутке
С граничными условиями
и начальным распределением температуры
Реализация
Конечно-разностная схема
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде
Введем равномерную сетку
с шагом разбиения . Шаг по времени назовем Построим явную конечно-разностную схему:Где,
— значение температуры в -ом узле.
Компьютерная реализация
Скачать программу File:Heat_Equation_Yan.zip
Результаты
- При уменьшении числа узлов в сетки, для данной многопроцессорной реализации, время расчета увеличивается.
- При увеличении числа процессов время расчета существенно сокращается, что делает целесообразным использование данного метода.